Skip to main content

Advertisement

Log in

Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermoelectric skutterudite Ba0.3Co4Sb12 is a promising candidate for waste heat recovery applications. Recently, it was demonstrated that the addition of silver nanoparticles (AgNP) to Ba0.3Co4Sb12 increases both the thermoelectric figure of merit and electrical conductivity. This study is the first to examine the effect of AgNP addition on the material’s mechanical properties. This study also found that the Young’s modulus, E, shear modulus, G, and bulk modulus, B, decreased linearly with increasing volume fraction porosity, P. Resonant ultrasound spectroscopy was employed to measure the elastic moduli, and Vickers indentation was used to determine the hardness, H, and fracture toughness, K C. Trends in the mechanical properties as a function of grain size, porosity, and the AgNP are discussed in terms of the pertinent literature. While K C was independent of AgNP addition, porosity, and grain size, both E and H decreased linearly with increasing porosity. In addition, this study is the first to identify (i) the Ag3Sb phase formed and (ii) the enhanced densification that occurs when the AgNP is sintered with Ba0.3Co4Sb12 powders, where both effects are consistent with the eutectic and peritectic reactions observed in the binary phase diagram Ag–Sb. These eutectic/peritectic reactions may also be linked to the enhancement of electrical conductivity previously observed when Ag is added to Ba0.3Co4Sb12. Also, similar beneficial eutectic/peritectic reactions may be available for other systems where conductive particles are added to other antimonides or other thermoelectric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ioffe AF (1960) Physics of semicondutors. Infosearch Limited, London, p 313

    Google Scholar 

  2. Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846

    Article  Google Scholar 

  3. Segerlind LG (1984) Applied finite element analysis, 2nd edn. Wiley, New York

    Google Scholar 

  4. Hutton D (2004) Fundamentals of finite element analysis. McGraw-Hill, Boston

    Google Scholar 

  5. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterworth-Heinemann, Boston

    Google Scholar 

  6. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics. Wiley-VCH, Hoboken

    Book  Google Scholar 

  7. Ren F, Case ED, Timm EJ, Schock HJ (2008) Hardness as a function of composition for n-type LAST thermoelectric material. J Alloy Compd 455:340–345

    Article  Google Scholar 

  8. Zhou X, Wang G, Zhang L, Chi H, Su X, Sakamoto J, Uher C (2012) Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J Mater Chem 22:2958–2964

    Article  Google Scholar 

  9. Androulakis J, Lin C-H, Kong H-J, Uher C, Wu C-I, Hogan T, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG (2007) Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1 − x)Sn(x)Te-PbS. J Am Chem Soc 129:9780–9788

    Article  Google Scholar 

  10. Zhao LD, He J, Hao S, Wu C-I, Hogan TP, Wolverton C, Dravid VP, Kanatzidis MG (2012) Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J Am Chem Soc 134:16327–16336

    Article  Google Scholar 

  11. Zhou M, Li J-F, Kita T (2008) Nanostructured AgPb(m)SbTe(m + 2) system bulk materials with enhanced thermoelectric performance. J Am Chem Soc 130:4527–4532

    Article  Google Scholar 

  12. Alleno E, Chen L, Chubilleau C, Lenoir B, Rouleau O, Trichet MF, Villeroy B (2009) Thermal conductivity reduction in CoSb3–CeO2 nanocomposites. J Electron Mater 39:1966–1970

    Article  Google Scholar 

  13. Ji X, He J, Alboni P, Su Z, Gothard N, Zhang B, Tritt TM, Kolis JW (2007) Thermal conductivity of CoSb3 nano-composites grown via a novel solvothermal nano-plating technique. Phys Status Solidi RRL 1:229–231

    Article  Google Scholar 

  14. Toprak MS, Stiewe C, Platzek D, Williams S, Bertini L, Muller E, Gatti C, Zhang Y, Rowe M, Muhammed M (2004) The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv Funct Mater 14:1189–1196

    Article  Google Scholar 

  15. Mi JL, Zhao XB, Zhu TJ, Tu JP (2008) Thermoelectric properties of Yb 0.15 Co 4 Sb 12 based nanocomposites with CoSb 3 nano-inclusion. J Phys D 41:205403

  16. Yoon S, Kwon O-J, Ahn S, Kim J-Y, Koo H, Bae S-H, Cho J-Y, Kim J-S, Park C (2013) The effect of grain size and density on the thermoelectric properties of Bi2Te3–PbTe compounds. J Electron Mater 42:3390–3396

    Article  Google Scholar 

  17. Tokiai T, Uesugi T, Nosaka M, Hirayama A, Ito K, Koumoto K (1997) Thermoelectric properties of Mn-doped iron disilicide ceramics fabricated from radio-frequency plasma-treated fine powders. J Mater Sci 32:3007–3011. doi:10.1023/A:1018609508637

    Article  Google Scholar 

  18. Case ED (2012) Thermal fatigue and waste heat recovery via thermoelectrics. J Electron Mater 41:1811–1819

    Article  Google Scholar 

  19. Case ED (2012) Chapter 16, Thermo-mechanical properties of thermoelectric materials. In: Rowe DM (ed) Thermoelectrics and its energy harvesting: modules, systems and applications. CRC Press, Taylor and Francis Group, Boca Raton, pp 16-1 to 16-29

  20. Lee H, Vashaee D, Wang DZ, Dresselhaus MS, Ren ZF, Chen G (2010) Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 107:094308

    Article  Google Scholar 

  21. Yang L, Wu JS, Zhang LT (2004) Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J Alloy Compd 364:83–88

    Article  Google Scholar 

  22. He Q, Hu S, Tang X, Lan Y, Yang J, Wang X, Ren Z, Hao Q, Chen G (2008) The great improvement effect of pores on ZT in Co1−xNixSb3 system. Appl Phys Lett 93:042108

    Article  Google Scholar 

  23. Wen P, Duan B, Zhai P, Li P, Zhang Q (2013) Effect of thermal annealing on the microstructure and thermoelectric properties of nano-TiN–Co4Sb11.5Te0.5 composites. J Mater Sci: Mater Electron 24:5155–5161

    Google Scholar 

  24. Pilchak AL, Ren F, Case ED, Timm EJ, Schock HJ, Wu C-I, Hogan TP (2007) Characterization of dry milled powders of LAST (lead–antimony–silver–tellurium) thermoelectric material. Philos Mag 87:4567–4591

    Article  Google Scholar 

  25. Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin C-H, Kanatzidis MG (2009) Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials. Philos Mag 89:143–167

    Article  Google Scholar 

  26. Ni JE, Case ED, Khabir KN, Stewart RC, Wu C-I, Hogan TP, Timm EJ, Girard SN, Kanatzidis MG (2010) Room temperature Young’s modulus, shear modulus, Poisson’s ratio and hardness of PbTe–PbS thermoelectric materials. Mater Sci Eng B 170:58–66

    Article  Google Scholar 

  27. Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, Stewart RC, Timm EJ (2010) Room temperature Young’s modulus, shear modulus, and Poisson’s ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials. J Alloy Compd 504:303–309

    Article  Google Scholar 

  28. Migliori A, Sarrao JL (1997) Resonant ultrasound spectroscopy: applications to physics, materials measurements, and nondestructive evaluation. Wiley-VCH, New York

    Google Scholar 

  29. Schmidt RD, Case ED, Lehr GJ, Morelli DT (2013) Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material. Intermetallics 35:15–24

    Article  Google Scholar 

  30. Lawn BR, Cook RF (2012) Probing material properties with sharp indenters: a retrospective. J Mater Sci 47:1–22. doi:10.1007/s10853-011-5865-1

    Article  Google Scholar 

  31. Underwood EE (1969) Stereology, or the quantitative evaluation of microstructures. J Microsc 89:161–180

    Article  Google Scholar 

  32. Case ED, Smyth JR, Monthei V (1981) Grain-size determinations. J Am Ceram Soc 64:C24–C25

    Article  Google Scholar 

  33. Barsoum MW (2003) Fundamentals of ceramics. Taylor & Francis Group, New York

    Book  Google Scholar 

  34. Voronin MV, Osadchii EG (2013) Standard thermodynamic properties of Ag3Sb and Ag6Sb evaluated by EMF measurements. Inorg Mater 49:550–554

    Article  Google Scholar 

  35. Cipriani C, Corazza M, Mazzetti G (1996) Reinvestigation of natural silver antimonides. Eur J Mineral 8:1347–1350

    Google Scholar 

  36. Feschotte P, Monachon F, Durussel P (1992) The binary system Sb–Ag: a revision of the Ag3Sb phase boundaries. J Alloy Compd 186:L17–L18

    Article  Google Scholar 

  37. Okamoto H (2007) Ag–Sb (silver–antimony). J Phase Equilibria 28:403

    Google Scholar 

  38. Hassam S, Bahari Z, Legendre B (2001) Phase diagrams of the Ag–Bi–Sb ternary system. J Alloy Compd 315:211–217

    Article  Google Scholar 

  39. Okamoto H (1993) Ag–Sb (silver–antimony). J Phase Equilibria 14:531–532

    Article  Google Scholar 

  40. Zhang L, Sakamoto J (2013) The microstructural stability and thermoelectric properties of Mm0.9Fe3.5Co0.5Sb12-based skutterudites. Mater Chem Phys 138:601–607

    Article  Google Scholar 

  41. Bukat K, Koscielski M, Sitek J, Jakubowska M, Miozniak A (2011) Silver nanoparticles effect on the wettability of Sn–Ag–Cu solder pastes and solder joints microstructure on copper. Solder Surf Mt Technol 23:150–160

    Article  Google Scholar 

  42. Dharma IGBB, Shukor MHA, Ariga T (2009) Wettability of low silver content lead-free solder alloy. Mater Trans 50:1135–1138

    Article  Google Scholar 

  43. Yoshizawa M, Nakanishi Y, Kumagai T, Oikawa M, Sekine C, Shirotani I (2004) Elastic anomalies of polycrystalline SmRu4P12 associated with metal-insulator transition. J Phys Soc Jpn 73:315–318

    Article  Google Scholar 

  44. Slack GA, Tsoukala VG (1994) Some properties of semiconducting IrSb3. J Appl Phys 76:1665–1671

    Article  Google Scholar 

  45. Morelli DT, Meisner GP (1995) Low temperature properties of the filled skutterudite CeFe4Sb12. J Appl Phys 77:3777–3781

    Article  Google Scholar 

  46. Nolas GS, Morelli DT, Tritt TM (1999) Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci 29:89–116

    Article  Google Scholar 

  47. Nolas GS, Kaeser M, Littleton RT, Tritt TM (2000) High figure of merit in partially filled ytterbium skutterudite materials. Appl Phys Lett 77:1855–1857

    Article  Google Scholar 

  48. Uher C (2001) Skutterudites: prospective novel thermoelectrics. In: Tritt TM (ed) Semiconductors and semimetals, vol 69. Academic Press, San Diego, pp 139–253

    Google Scholar 

  49. Zhang L, Rogl G, Grytsiv A, Puchegger S, Koppensteiner J, Spieckermann F, Kabelka H, Reinecker M, Rogl P, Schranz W, Zehetbauer M, Carpenter MA (2010) Mechanical properties of filled antimonide skutterudites. Mater Sci Eng B 170:26–31

    Article  Google Scholar 

  50. Xiong DB, Okamoto NL, Inui H (2013) Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb. Scr Mater 69:397–400

    Article  Google Scholar 

  51. Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29:143–150

    Article  Google Scholar 

  52. Halpin JC (1992) Primer on composite materials analysis. Technomic Publishing Company Inc., Lancaster

    Google Scholar 

  53. Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg–AZ91/AlN composites. Mater Des 38:91–98

    Article  Google Scholar 

  54. Couturier R, Ducret D, Merle P, Disson JP, Joubert P (1997) Elaboration and characterization of a metal matrix composite: Al/AlN. J Eur Ceram Soc 17:1861–1866

    Article  Google Scholar 

  55. Ni JE, Ren F, Case ED, Timm EJ (2009) Porosity dependence of elastic moduli in LAST (lead–antimony–silver–tellurium) thermoelectric materials. Mater Chem Phys 118:459–466

    Article  Google Scholar 

  56. Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York

    Google Scholar 

  57. Ramakrishan N, Arunachalam VS (1993) Effective elastic moduli of porous ceramic materials. J Am Ceram Soc 76:2745–2752

    Article  Google Scholar 

  58. Boccaccini AR (1994) Comment on “Effective Elastic Moduli of Porous Ceramic Materials”. J Am Ceram Soc 77:2779–2781

    Article  Google Scholar 

  59. Rice RW (1995) Comment on ‘Effective Elastic Moduli of Porous Ceramic Materials”. J Am Ceram Soc 78:1711

    Article  Google Scholar 

  60. Dunn ML, Ledbetter H (1995) Poisson’s ratio of porous and microcracked solids: theory and application to oxide superconductors. J Mater Res 10:2715–2722

    Article  Google Scholar 

  61. Kim HS, Bush MB (1999) The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured Mater 11:361–367

    Article  Google Scholar 

  62. Zawrah MF, Abdel-kader H, Elbaly NE (2012) Fabrication of Al2O3–20vol% Al nanocomposite powders using high energy milling and their sinterability. Mater Res Bull 47:655–661

    Article  Google Scholar 

  63. Chang Q, Chen DL, Ru HQ, Yue XY, Yu L, Zhang CP (2010) Toughening mechanisms in iron-containing hydroxyapatite/titanium composites. Biomaterials 31:1493–1501

    Article  Google Scholar 

  64. Fujieda T, Uno M, Ishigami H, Kurachi M, Wakamatsu N, Doi Y (2012) Addition of platinum and silver nanoparticles to toughen dental porcelain. Dent Mater J 31:711–716

    Article  Google Scholar 

  65. Fan X, Case ED, Yang Q, Nicholas JD (2013) Room temperature hardness of gadolinia-doped ceria as a function of porosity. J Mater Sci 48:6977–6985. doi:10.1007/s10853-013-7506-3

    Article  Google Scholar 

  66. Ramadass N, Mohan S, Reddy SR (1983) Studies on the metastable phase retention and hardness in zirconia ceramics. Mater Sci Eng 60:65–72

    Article  Google Scholar 

  67. Mangalaraja RV, Ananthakumar S, Uma K, Jiménez RM, López M, Camurri CP (2009) Microhardness and fracture toughness of Ce0.9Gd0.1O1.95 for manufacturing solid oxide electrolytes. Mater Sci Eng A 517:91–96

    Article  Google Scholar 

  68. Shao Y, Du R, Wu X, Song F, Xu X, Jiang C (2013) Effect of porosity on the crack pattern and residual strength of ceramics after quenching. J Mater Sci 48:6431–6436. doi:10.1007/s10853-013-7444-0

    Article  Google Scholar 

  69. Ravi V, Firdosy S, Caillat T, Lerch B, Calamino A, Pawlik R, Nathal M, Sechrist A, Buchhalter J, Nutt S (2008) Mechanical properties of thermoelectric skutterudites. Proc Am Inst Phys Conf, Space Technol Appl Int Forum, Albuquerque, NM, pp 10–14

  70. Eilertsen J, Subramanian MA, Kruzic JJ (2013) Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods. J Alloy Compd 552:492–498

    Article  Google Scholar 

  71. Rogl G, Rogl P (2011) Mechanical properties of skutterudites. Sci Adv Mater 3:517–538

    Article  Google Scholar 

  72. Pharr GM, Herbert EG, Gao Y (2010) The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu Rev Mater Res 40:271–292

    Article  Google Scholar 

  73. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    Article  Google Scholar 

  74. Bull SJ, Page TF, Yoffe EH (1989) An explanation of the indentation size effect in ceramics. Philos Mag Lett 59:281–288

    Article  Google Scholar 

  75. Sangwal K (2009) Review: indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids—some basic concepts and trends. Cryst Res Technol 44:1019–1037

    Article  Google Scholar 

  76. Sangwal K (2000) On the reverse indentation size effect and microhardness measurement of solids. Mater Chem Phys 63:145–152

    Article  Google Scholar 

  77. Rice RW (2000) Mechanical properties of ceramics and composites. Marcel Dekker, New York

    Book  Google Scholar 

  78. Lawn BR (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  79. Armstrong RW (2011) The hardness and strength properties of WC–Co composites. Matereials 4:1287–1308

    Article  Google Scholar 

  80. Monroe LD, Smyth JR (1978) Grain size dependence of the fracture energy of Y2O3. J Am Ceram Soc 61:538–539

    Article  Google Scholar 

  81. Rhoades WH, Baldoni JG, Wei GC (1986) Final report for ORN contract N00014-82-C-0452. GTE Laboratory

  82. Yasuda K, Kim SD, Kanemichi Y (1990) Influence of grain size and temperature on fracture toughness of MgO sintered body. J Ceram Soc Jpn 98:1103–1108

    Article  Google Scholar 

  83. Veldkamp JDB, Hattu N (1979) On the fracture toughness of brittle materials. Philips J Res 34:1–25

    Google Scholar 

  84. Rice RW (1996) Grain size and porosity dependence of ceramic fracture energy and toughness at 22°C. J Mater Sci 31:1969–1983. doi:10.1007/BF00356616

    Article  Google Scholar 

  85. Yao W, Liu J, Holland TB, Huang L, Xiong Y, Schoenung JM, Mukherjee AK (2011) Grain size dependence of fracture toughness for fine grained alumina. Scr Mater 65:143–146

    Article  Google Scholar 

  86. Vekinis G, Ashby MF, Beaumont PWR (1990) R-curve behavior of Al2O3 ceramics. Acta Metall Mater 38:1151–1162

    Article  Google Scholar 

  87. Swanson PL, Fairbanks CJ, Lawn BR, Mai YW, Hockey BJ (1987) Crack-interface grain bridging as a fracture-resistance mechanism in ceramics. J Am Ceram Soc 70:279–289

    Article  Google Scholar 

  88. Foulk JW III, Cannon RM, Johnson GC, Klein PA, Ritchie RO (2007) A micromechanical basis for partitioning the evolution of grain bridging in brittle materials. J Mech Phys Solids 55:719–743

    Article  Google Scholar 

  89. Bennison SJ, Lawn BR (1989) Role of interfacial grain-bridging sliding friction in the crack resistance and strength of nontransforming ceramics. Acta Metall 37:2659–2671

    Article  Google Scholar 

  90. Schmidt RD, Case ED, Ni JE, Trejo RM, Lara-Curzio E, Korkosz RJ, Kanatzidis MG (2013) High-temperature elastic moduli of thermoelectric SnTe1±x–ySiC nanoparticulate composites. J Mater Sci 48:8244–8258. doi:10.1007/s10853-013-7637-6

    Article  Google Scholar 

  91. Hasselman DPH, Fulrath RM (1965) Effect of spherical tungsten dispersions on young’s modulus of a glass. J Am Ceram Soc 48:548–549

    Article  Google Scholar 

  92. Lowrie R, Gonas AM (1967) Single crystal elastic properties of tungsten from 24° to 1800°C. J Appl Phys 38:4505–4509

    Article  Google Scholar 

  93. Macfarlane RE, Rayne JA (1965) Anomalous temperature dependence of shear modulus c44 for platinum. Phys Lett 18:91–92

    Article  Google Scholar 

  94. Neighbours J, Alers G (1958) Elastic constants of silver and gold. Phys Rev 885:707–712

    Article  Google Scholar 

  95. Chang YA, Himmel L (1966) Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature. J Appl Phys 37:3567–3572

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Energy, Revolutionary Materials for Solid State Energy Conversion Center, an Energy Frontiers Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Appendix A: Effect of nanoparticle addition on the elastic modulus of a composite material

Appendix A: Effect of nanoparticle addition on the elastic modulus of a composite material

The effect of the nanoparticle additions on the Young’s modulus, E C, of a nanocomposites material can be predicted from numerous models. In this Appendix, we list relationships for four composite models, namely rule of mixtures (ROM), Reuss constant strain (RCS), Hashin particulate (HP), and Halpin–Tsai (HT) [90]. For each model, the Young’s modulus of the composite, E C, is the based on E r, the elastic modulus of the nanoparticle reinforcement phase, V r, the volume fraction reinforcement phase, E m, the Young’s modulus of the matrix phase, and, V m, the volume fraction matrix phase. Expressions for the four models can be written as

$$ {\text{ROM}}: E_{\text{C}} = V_{\text{m}} E_{\text{m}} + V_{\text{r}} E_{\text{r}} $$
(8)
$$ {\text{RCS}}:\frac{1}{{E_{\text{C}} }} = \frac{{V_{\text{m}} }}{{E_{\text{m}} }} + \frac{{V_{\text{r}} }}{{E_{\text{r}} }} $$
(9)
$$ {\text{HP}}:E_{\text{C}} = E_{\text{m}} \left( {\frac{{E_{\text{m}} V_{\text{m}} + E_{\text{r}} \left\{ {V_{\text{f}} + 1} \right\}}}{{E_{\text{r}} V_{\text{m}} + E_{\text{m}} \left\{ {V_{\text{r}} + 1} \right\}}}} \right) $$
(10)
$$ {\text{HT}}:E_{\text{C}} = E_{\text{m}} \left( {\frac{{1 + 2(a/b)qV_{\text{r}} }}{{E_{\text{r}} V_{\text{m}} + E_{\text{m}} \left\{ {V_{\text{r}} + 1} \right\}}}} \right) $$
(11)

In the HT model, a/b is the aspect ratio (length/thickness) for the reinforcing phase and q is a boundary condition parameter given by

$$ q = \frac{{\left( {\frac{{E_{\text{r}} }}{{E_{\text{m}} }}} \right) - 1}}{{\left( {\frac{{E_{\text{r}} }}{{E_{\text{m}} }}} \right) + 2\left( \frac{a}{b} \right)}} $$
(12)

Table 8 summarizes the Young’s modulus change due to the addition of both micron-sized and nanosized-metallic particles to brittle matrices in studies by Hasselman [91] and by Fujieda et al. [64]. Table 8 gives the measured composite modulus, E C, for the addition of 0.10, 0.20, 0.30, and 0.40 volume fraction of tungsten particles with diameters of approximately 30 µm to a borosilicate glass [91], along with the predicted values of modulus calculated by the ROM, RCS, HP, HT models and the modulus of tungsten [92]. In addition, Table 8 lists the measured E C, for composite specimens from Fujieda et al. [64], who measured the elastic modulus change induced by adding either 26 wt % platinum nanoparticles (PtNP) [93] or 26 wt % AgNP [94, 95] to a dental porcelain, where the mean diameters of the PtNP and AgNP nanoparticles were 5 nm and 10 nm, respectively. The measured composite moduli, E C, (Table 8) [64, 91] agree quite well with the moduli calculated in this study using the Halpin–Tsai model (HT). Since the metal particles were spherical in both the Hasselman [91] and Fujieda et al. [64] studies, for the purposes of the calculations, we set a/b = 1 in Eq. (11), where a/b is the particle aspect ratio.

The amounts of particle addition in the studies by Fujieda et al. [64] and Hasselman [91] were significantly greater than the 0.0068 volume fraction (0.5 wt %) AgNP added in this study. The four composite models given in this Appendix predict a decrease in E C of about 0.39 % with the 0.5 wt % AgNP addition to the Ba-skutterudite in this study. In recent research by Schmidt et al. [90] applied the four modulus-composite models to a thermoelectric system consisting of a brittle matrix and a brittle reinforcing phase, namely with 0.00, 0.01, 0.02, 0.03, and 0.04 volume fraction of added SiC nanoparticles (SiCNP) in the brittle thermoelectric matrix SnTe1+X , (where x = 0.0 or 0.016), Hashin and the Halpin–Tsai models best described the elastic modulus data. Thus, for the Hasselman [91] and Fujieda et al. [64] studies in which the volume percentage of micro- and nano-particles added was relatively high (from 0.10 to 0.40 volume fraction), as well as the SnTe1+X (with 0.00 to 0.04 volume fraction SiCNP added), the Haplin–Tsai model agrees with the experimental modulus data relatively well. In particular, for 0.5 wt % AgNP in this study, the Haplin–Tsai model predicts a change in E of only 0.35 %, which is consistent with the E values measured in this study for the Ba-skutterudite with and without added AgNP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, R.D., Case, E.D., Lobo, Z. et al. Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites. J Mater Sci 49, 7192–7212 (2014). https://doi.org/10.1007/s10853-014-8427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8427-5

Keywords

Navigation