Skip to main content
Log in

Effect of multi-walled carbon nanotubes on mechanical and rheological properties of poly(trimethylene terephthalate)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper investigates rheological and mechanical properties of poly(trimethylene terephthalate) (PTT) in presence of multi-walled carbon nanotubes (MWCNTs). Morphological characterization by scanning electron microscope and transmission electron microscope showed uniform distribution of MWCNTs in the PTT matrix. Incorporation of MWCNTs into PTT matrix resulted in higher complex viscosity (η), storage (G′) and loss modulus (G″) than those of neat PTT, especially in low-frequency region. The dramatic increase in melt viscosity of PTT observed upon incorporation of MWCNTs in the range of 0.25–1 wt% could be due to the formation of interconnected network of MWCNTs in the polymer matrix, and thus, this can be regarded as rheological percolation threshold concentration. Cole–Cole plot showed change in slope and also shift in G′ versus G″ plot, which suggested change in microstructure upon MWCNT addition. The reinforcing effect of MWCNTs was also confirmed by dynamic mechanical analysis, where, by adding CNTs, a noticeable increase in storage modulus of PTT was observed. However, addition of MWCNTs showed no significant effect on the tensile properties of PTT due to poor interfacial interaction between CNTs and polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  2. Mylvaganam K, Zhang LC (2007) Fabrication and application of polymer composites comprising carbon nanotubes. Recent Pat Nanotechnol 1:59–65

    Article  Google Scholar 

  3. Nguyen TP, Lee CW, Hassen S, Le HC (2009) Hybrid nanocomposites for optical applications. Solid State Sci 11:1810–1814

    Article  Google Scholar 

  4. Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703

    Article  Google Scholar 

  5. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res (Sao Carlos, Brazil) 12:1–39

    Article  Google Scholar 

  6. Byrne MT, Gun’ko YK (2010) Recent advances in research on carbon nanotube-polymer composites. Adv Mater (Weinheim, Germany) 22:1672–1688

    Article  Google Scholar 

  7. Bal S, Samal SS (2007) Carbon nanotube reinforced polymer composites: a state of the art. Bull Mater Sci 30:379–386

    Article  Google Scholar 

  8. Choudhary V, Gupta A (2011) Polymer/carbon nanotube nanocomposites. In: Yellampalli S (ed) Carbon nanotubes: polymer nanocomposites. InTech, Rijeka, pp 65–90

    Google Scholar 

  9. Jin Z, Pramoda KP, Goh SH, Xu G (2002) Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites. Mater Res Bull 37:271–278

    Article  Google Scholar 

  10. Wu H-X, Qiu X-Q, Cao W-M, Lin Y-H, Cai R-F, Qian S-X (2007) Polymer-wrapped multiwalled carbon nanotubes synthesized via microwave-assisted in situ emulsion polymerization and their optical limiting properties. Carbon 45:2866–2872

    Article  Google Scholar 

  11. Gupta A, Choudhary V (2013) Thermal and mechanical properties of poly(trimethylene terephthalate)/acid-treated multiwalled carbon nanotube composites. J Mater Sci 48:7063–7070. doi:10.1007/s10853-013-7517-0

    Article  Google Scholar 

  12. Wu C-S (2009) Synthesis and characterization of poly(trimethylene terephthalate) nanocomposites incorporating multi-walled carbon nanotubes. J Appl Polym Sci 114:1633–1642

    Article  Google Scholar 

  13. Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 87:161909/161901–161909/161903

    Article  Google Scholar 

  14. Xiao KQ, Zhang LC, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67:177–182

    Article  Google Scholar 

  15. Jun Young K, Seong Hun K (2006) Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6ΓÇÉnaphthalate) nanocomposites. J Polym Sci Part B Polym Phys 44:1062–1071. doi:10.1002/polb.20728

    Article  Google Scholar 

  16. Jin SH, Park Y-B, Yoon KH (2007) Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Compos Sci Technol 67:3434–3441. doi:10.1016/j.compscitech.2007.03.013

    Article  Google Scholar 

  17. Gupta A, Manocha LM, Choudhory V (2008) Studies on multi wall carbon nanotubes reinforced poly (trimethylene terephthalate) nanocomposite. AIP Conf Proc 1042:129–131

    Article  Google Scholar 

  18. Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71:1563–1568

    Article  Google Scholar 

  19. Gupta A, Choudhary V (2011) Electrical conductivity and shielding effectiveness of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. J Mater Sci 46:6416–6423

    Article  Google Scholar 

  20. Gupta A, Choudhary V (2012) Effect of multiwall carbon nanotubes on thermomechanical and electrical properties of poly(trimethylene terephthalate). J Appl Polym Sci 123:1548–1556

    Article  Google Scholar 

  21. Szymczyk A, Roslaniec Z, Zenker M, Garcia-Gutierrez MC, Hernandez JJ, Rueda DR, Nogales A, Ezquerra TA (2011) Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate). eXPRESS. Polym Lett 5:977–995

    Article  Google Scholar 

  22. Gupta A, Choudhary V (2013) Isothermal crystallization kinetics of poly(trimethylene terephthalate)/multiwall carbon nanotubes composites. J Therm Anal Calorim 1–9. doi:10.1007/s10973-013-2982-x

  23. Xu Y, Jia H-B, Piao J-N, Ye S-R, Huang J (2008) Crystallization behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. J Mater Sci 43:417–421

    Article  Google Scholar 

  24. Gupta A, Choudhary V (2013) Rheologic and mechanical properties of multiwalled carbon nanotubes-reinforced poly(trimethylene terephthalate) composites. J Mater Sci 48:3347–3356

    Article  Google Scholar 

  25. Wu D, Shi T, Yang T, Sun Y, Zhai L, Zhou W, Zhang M, Zhang J (2011) Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. Eur Polym J 47:284–293

    Article  Google Scholar 

  26. Mathur RB, Chatterjee S, Singh BP (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1615

    Article  Google Scholar 

  27. Gupta A, Choudhary V (2010) Isothermal and non-isothermal crystallization kinetics and morphology of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. Macromol Symp 290:56–69

    Article  Google Scholar 

  28. Chuah HH, Lin-Vien D, Soni U (2001) Poly(trimethylene terephthalate) molecular weight and Mark–Houwink equation. Polymer 42:7137–7139

    Article  Google Scholar 

  29. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734

    Article  Google Scholar 

  30. Kim JY, Han SI, Hong S (2008) Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 49:3335–3345

    Article  Google Scholar 

  31. Potschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  32. Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825–8830

    Article  Google Scholar 

  33. Song YS (2006) Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheol Acta 46:231–238

    Article  Google Scholar 

  34. Poetschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Article  Google Scholar 

  35. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  Google Scholar 

  36. Wu D, Zhou C, Yu W, Fan X (2005) Effect of flocculated structure on rheology of poly(butylene terephthalate)/clay nanocomposites. J Polym Sci Part B Polym Phys 43:2807–2818

    Article  Google Scholar 

  37. Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behavior of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J 43:949–958

    Article  Google Scholar 

  38. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. I. Alternating-current characteristics. J Chem Phys 9:341–351

    Article  Google Scholar 

  39. Kim JY, Park HS, Kim SH (2007) Multiwall-carbon-nanotube-reinforced poly(ethylene terephthalate) nanocomposites by melt compounding. J Appl Polym Sci 103:1450–1457

    Article  Google Scholar 

  40. Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, Smalley RE (2003) Polyvinyl alcohol/SWNT composite film. Nano Lett 3:1285–1288

    Article  Google Scholar 

  41. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  Google Scholar 

  42. Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A (2010) Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 31:4202–4208

    Article  Google Scholar 

  43. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1162–1173

    Article  Google Scholar 

  44. Liu T, Phang IY, Shen L, Chow SY, Zhang W-D (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  Google Scholar 

  45. Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  Google Scholar 

  46. Fisher FT, Bradshaw RD, Brinson LC (2002) Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl Phys Lett 80:4647–4649

    Article  Google Scholar 

Download references

Acknowledgments

University Grants Commission (for providing financial assistance to one of the authors Ms. Anju Gupta).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Choudhary, V. Effect of multi-walled carbon nanotubes on mechanical and rheological properties of poly(trimethylene terephthalate). J Mater Sci 49, 3839–3846 (2014). https://doi.org/10.1007/s10853-014-8097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8097-3

Keywords

Navigation