Skip to main content
Log in

Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Rheological properties of poly(ethylene oxide) nanocomposites embedded with carbon nanotubes (CNTs) were investigated in the present study. It was found that the CNT nanocomposites had a higher effective filler volume fraction than the real filler volume fraction, which yielded a drastic enhancement of shear viscosity. As the CNT loading in the nancomposites increases, non-Newtonian behavior was observed at the low-shear-rate region in the steady shear experiments. Oscillatory dynamic shear experiments showed that more addition of the CNTs led to stronger solidlike and nonterminal behaviors. To identify a dispersion state of the CNTs, field emission scanning electron spectroscopy and transmission electron microscopy were adopted and thermal analysis was also performed by using differential scanning calorimetry. The existence of percolated network structures of the CNTs even at a low CNT loading was verified by rheological properties and electrical conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal S, Salovey R (1995) Model filled polymers. XV: the effects of chemical interactions and matrix molecular weight on rheology. Polym Eng Sci 35:1241–1251

    Article  CAS  Google Scholar 

  • Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    Article  CAS  Google Scholar 

  • Bohm GGA, Nguyen MN (1995) Flocculation of carbon black in filled rubber compounds. I. Flocculation occurring in unvulcanized compounds during annealing at elevated temperatures. J Appl Polym Sci 55:1041–1050

    Article  Google Scholar 

  • Brady JF (1993) The rheological behavior of concentrated colloidal dispersions. J Chem Phys 99:567–581

    Article  CAS  Google Scholar 

  • Cai H, Ait-Kadi A, Brisson J (2003) Dynamic rheological analysis of a miscible blend showing strong interactions. Polymer 44:1481–1489

    Article  CAS  Google Scholar 

  • Chan CM, Wu J, Li JX, Cheung YK (2002) Polyprolyene/calcium carbonate nanocomposites. Polymer 43:2981–2992

    Article  CAS  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  • Eyring H (1936) Viscosity, plasticity and diffusion as examples of absolute reaction rates. J Chem Phys 4:283–291

    Article  CAS  Google Scholar 

  • Faers MA (2003) The importance of the interfacial stabilizing layer on the macroscopic flow properties of suspension dispersed in non-adsorbing polymer solution. Adv Colloid Interface Sci 106:23–54

    Article  CAS  Google Scholar 

  • Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512

    Article  CAS  Google Scholar 

  • Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  • Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 34:8084–8093

    Article  CAS  Google Scholar 

  • Kim HB, Choi JS, Lee CH, Lim ST, Jhon MS, Choi HJ (2005) Polymer blend/organoclay nanocomposite with poly(ethylene oxide) and poly(methyl methacrylate). Eur Polym J 41:679–685

    Article  CAS  Google Scholar 

  • Krieger IM, Dougherty (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137–152

    Article  CAS  Google Scholar 

  • Laun HM (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30:459–501

    Article  CAS  Google Scholar 

  • Liao CS, Ye WB (2004) Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochim Acta 49:4993–4998

    Article  CAS  Google Scholar 

  • Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Electrical properties of multi-walled carbon nanotube/polypyrrole nanocables: percolation dominated conductivity. J Phys D Appl Phys 37:1965–1969

    Article  CAS  Google Scholar 

  • Loos J, Alexeev A, Grossiord N, Koning CE, Regev O (2005) Visualization of single-walled carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. Ultramicroscopy 104:160–167

    Article  CAS  Google Scholar 

  • Loyens W, Jannasch P, Maurer FHJ (2005) Effect of clay modifier and matrix molar mass on the structure and properties of poly(ethylene oxide)/cloisite nanocomposites via melt-compounding. Polymer 46:903–914

    Article  CAS  Google Scholar 

  • Luckham PF, Ukeje MA (1999) Effect of particle size distribution on the rheology of dispersed systems. J Colloid Interface Sci 220:347–356

    Article  CAS  Google Scholar 

  • Martuscelli E, Vicini L, Seves A (1984) Melt rheology of a compatible blend: poly(ethylene oxide)/poly(methyl methacrylate). Makromol Chem Rapid Commun 5:255–261

    Article  CAS  Google Scholar 

  • Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825–8830

    Article  CAS  Google Scholar 

  • Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol 63:1637–1646

    Article  CAS  Google Scholar 

  • Quemada D (1998) Rheological modeling of complex fluids. I. The concept of effective volume fraction revisited. Eur Phys J Appl Phys 1:119–127

    Article  Google Scholar 

  • Rubin Z, Sunshine SA, Heaney MB, Bloom I, Balberg I (1999) Critical behavior of the electrical transport properties in a tunneling-percolation system. Phys Rev B 59:12196–12199

    Article  CAS  Google Scholar 

  • Salalha W, Dror Y, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2004) Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir 20:9852–9855

    Article  CAS  Google Scholar 

  • Shenoy AV (1999) Rheology of filled polymer systems. Kluwer, London

    Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthananroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872

    Article  CAS  Google Scholar 

  • Song YS, Youn JR (2004a) Properties of epoxy nanocomposites filled with carbon nanomaterials. E-Polymers no. 080

  • Song YS, Youn JR (2004b) Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation. Korea Aust Rheol J 16:201–212

    Google Scholar 

  • Tanaka H, White JL (1980) A cell model theory of the shear viscosity of a concentrated suspension of interacting spheres in a non-Newtonian fluid. J Non-Newton Fluid Mech 7:333–343

    Article  CAS  Google Scholar 

  • Tsotra P, Friedrich K (2003) Electrical and mechanical properties of functionally graded epoxy-resin/carbon fibre composites. Compos Part A Appl Sci Manuf 34:75–82

    Article  Google Scholar 

  • Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) Morphological characterization of single-walled carbon nanotubes-PP composites. Compos Sci Technol 63:1149–1153

    Article  CAS  Google Scholar 

  • Venkatraman S, Okano M (1990) A comparison of torsional and capillary rheometry for polymer melts: the Cox–Merz rule revisited. Polym Eng Sci 30:308–313

    Article  CAS  Google Scholar 

  • White JL, Czarnecki I, Tanaka H (1980) Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts. Rubber Chem Technol 53:823–835

    CAS  Google Scholar 

  • Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanism in amorphous polymer and other glass forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  • Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 394:52–55

    Article  CAS  Google Scholar 

  • Zaman AA, Bjelopavlic M, Moudgil BM (2000) Effect of adsorbed polyethylene oxide on the rheology of colloidal silica suspensions. J Colloid Interface Sci 226:290–298

    Article  CAS  Google Scholar 

  • Zuiderduin WCJ, Westzaan C, Huétink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44:261–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Seok Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y.S. Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheol Acta 46, 231–238 (2006). https://doi.org/10.1007/s00397-006-0137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-006-0137-8

Keywords

Navigation