Skip to main content
Log in

Electrical conductivity and shielding effectiveness of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) composites have been fabricated to evaluate the potential of PTT composites as electromagnetic interference (EMI) shielding material. The room temperature electrical conductivity, complex permittivity, and shielding effectiveness (SE) of PTT/MWCNT composites were studied in the frequency range of 8.2–12.4 GHz (X-band). The dc conductivity (σ) of composites increased with increasing MWCNT loading and a typical percolation behavior was observed at 0.48 vol% MWCNT loading. The highest EMI SE of PTT/MWCNT composites was ~23 decibel (dB) at 4.76 vol% MWCNT loading which suggest that these composites can be used as light weight EMI shielding materials. The correlation among the SE, complex permittivity, and electrical conductivity was also studied. The EMI shielding mechanism of PTT/MWCNT composites was studied by resolving the total EMI SE into absorption and reflection loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang Y, Li N, Ma Y, Du F, Li F, He X (2007) Carbon 45:1614

    Article  CAS  Google Scholar 

  2. Chandrasekhar P, Naishadham K (1999) Synth Met 105:115

    Article  CAS  Google Scholar 

  3. Chung DDL (2000) J Mater Eng Perform 9:350

    Article  CAS  Google Scholar 

  4. Yoshida S, Sato M, Shimada Y (1999) J Appl Phys 85:4636

    Article  CAS  Google Scholar 

  5. Chung DDL (2004) J Mater Sci 39:2645. doi:10.1023/B:JMSC.0000021439.18202.ea

    Article  CAS  Google Scholar 

  6. Tzeng SS, Chang FY (2001) Mater Sci Eng A 302:258

    Article  Google Scholar 

  7. Shui X, Chung DDL (2000) J Mater Sci 35:1773. doi:10.1023/A:1004784720338

    Article  CAS  Google Scholar 

  8. Wen S, Chung DDL (2004) Cem Concr Res 34:329

    Article  CAS  Google Scholar 

  9. Luo X, Chung DDL (1996) Carbon 34:1293

    Article  CAS  Google Scholar 

  10. Luo X, Chung DDL (1999) Compos Part B Eng 30:227

    Article  Google Scholar 

  11. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) J Nanosci Nanotechnol 5:927

    Article  CAS  Google Scholar 

  12. Yang SY, Lozano K, Lomeli A, Foltz HD, Jones R (2005) Compos Part A 36:691

    Article  Google Scholar 

  13. Yang Y, Gupta MC, Dudley KL (2007) Nanotechnology 18:345701

    Article  Google Scholar 

  14. Fan Z, Luo G, Zhang Z, Zhou L, Wei F (2006) J Mater Sci Eng B 132:85

    Article  CAS  Google Scholar 

  15. Liu Z, Bai G, Huang Y (2007) Carbon 45:821

    Article  CAS  Google Scholar 

  16. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS (2004) Appl Phys Lett 84:589

    Article  CAS  Google Scholar 

  17. Chung DDL (2001) Carbon 39:279

    Article  CAS  Google Scholar 

  18. Micheli D, Pastore R, Apollo C, Marchetti M, Gradoni G, Moglie F (2009) IEEE Conference on Nanotechnology, pp 226–235

  19. Sundararaj U, Al-Saleh MH (2009) Carbon 47:1738

    Article  Google Scholar 

  20. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Nano Lett 5:2131

    Article  CAS  Google Scholar 

  21. Markham D (2000) Mater Des 21:45

    Article  Google Scholar 

  22. Han EG, Kim EA, Oh KW (2001) Synth Met 123:469

    Article  CAS  Google Scholar 

  23. Hakansson E, Amiet A, Kaynaka A (2006) Synth Met 156:917

    Article  CAS  Google Scholar 

  24. Xu H, Anlage SM, Hu L, Grunera G (2007) Appl Phys Lett 90:3

    Google Scholar 

  25. Gupta A, Choudhary V (2009) Macromol Symp 290:56

    Article  Google Scholar 

  26. Xu Y, Jia H-B, Piao J-N, Ye S-R, Huang J (2008) J Mater Sci 43:417. doi:10.1007/s10853-007-2161-1

    Article  CAS  Google Scholar 

  27. Wu CS (2009) J Appl Polym Sci 114:1633

    Article  CAS  Google Scholar 

  28. Gupta A, Manocha LM, Choudhory V (2008) AIP Conference Proceedings 2008 (IVth International Conference on Times of Polymers (TOP) and Composites, 2008) 1042, pp 129–131

  29. Mathur RB, Chatterjee S, Singh BP (2008) Compos Sci Technol 68:1608

    Article  CAS  Google Scholar 

  30. Chuah HH, Lin-Vien D, Soni U (2001) Polymer 42:7137

    Article  CAS  Google Scholar 

  31. Lu Q, Keskar G, Ciocan R, Rao R, Mathur RB, Rao AM, Larcom LL (2006) J Phys Chem B 110:24371

    Article  CAS  Google Scholar 

  32. Kovalchuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) J Mater Sci 43:7132. doi:10.1007/s10853-008-3029-8

    Article  CAS  Google Scholar 

  33. Haung JC (2002) Adv Polym Tech 21:299

    Article  Google Scholar 

  34. Finegan IC, Tibbetts GG (2001) J Mater Res 16:1668

    Article  CAS  Google Scholar 

  35. Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69:1486

    Article  CAS  Google Scholar 

  36. Stauffer D, Aharony A (1992) Introduction to percolation theory, 2nd edn. Taylor & Francis, London

    Google Scholar 

  37. Li Y, Chen C, Zhang S, Ni Y, Huang J (2008) Appl Surf Sci 254:5766

    Article  CAS  Google Scholar 

  38. Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Compos Sci Technol 63:1637

    Article  CAS  Google Scholar 

  39. Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ (2004) Curr Appl Phys 4:577

    Article  Google Scholar 

  40. Bhattacharya SK (1986) Metal-filled polymers: properties and application. Marcel Dekker, New York

    Google Scholar 

  41. Taipalus R, Harmia T, Zhang MQ, Friedrich K (2001) Compos Sci Technol 61:801

    Article  CAS  Google Scholar 

  42. Zheng W, Wong S-C (2003) Compos Sci Technol 63:225

    Article  CAS  Google Scholar 

  43. Gorrasi G, Sarno M, Di AB, Sannino D, Ciambelli P, Vittoria V (2007) J Polym Sci B 45:597

    Article  CAS  Google Scholar 

  44. Gorrasi G, Romeo V, Sannino D, Sarno M, Ciambelli P, Tucci V (2007) Nanotechnology 18:275703

    Article  Google Scholar 

  45. Anand AK, Agarwal US, Joseph R (2007) J Appl Polym Sci 104:3090

    Article  Google Scholar 

  46. Hornbostel B, Potschke P, Kotz J, Roth S (2006) Phys Stat Sol (b) 243:3445

    Article  CAS  Google Scholar 

  47. Sharma BK, Khare N, Sharma R, Dhawan SK, Vankar VD, Gupta HC (2009) Compos Sci Technol 69:1932

    Article  CAS  Google Scholar 

  48. Panwar V, Sachdev VK, Mehra RM (2007) Eur Polym J 43:573

    Article  CAS  Google Scholar 

  49. Joo J, Epstein AJ (1994) Appl Phys Lett 65:2278

    Article  CAS  Google Scholar 

  50. Jou W-S, Cheng H-Z, Hsu C-F (2007) J Alloy Comp 434–435:641

    Article  Google Scholar 

  51. Li Y, Chen C, Li J-T, Zhang S, Ni Y, Chai S, Haung J (2010) Nano Res Lett 5:1170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

University Grants Commission (for providing financial assistance to one of the authors Ms. Anju Gupta), National Physical Laboratory (for EMI shielding and conductivity measurements), and Advanced Instrumental Research Facility at Jawaharlal Nehru University Delhi (for TEM) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Choudhary, V. Electrical conductivity and shielding effectiveness of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. J Mater Sci 46, 6416–6423 (2011). https://doi.org/10.1007/s10853-011-5591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5591-8

Keywords

Navigation