Skip to main content
Log in

Carbon nanotube-filled polypropylene/polyethylene blends: compatibilization and electrical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of carbon nanotubes (CNT) on the morphology, mechanical and electrical properties of immiscible polypropylene/polyethylene (PP/PE) blends were investigated. PP/PE (90/10) blend filled with up to 20 wt% CNT and PP/PE blends with different PP/PE volume ratios and constant CNT volume fraction were prepared by melt mixing. The morphology analysis showed that the nanotubes have higher affinity towards the PE phase. However, for the 90/10 PP/PE blend filled with 20 wt% CNT, some nanotubes were observed within the PP phase due to the saturation of the PE minor phase. The 90/10 PP/PE blend exhibited co-continuous morphology even at very low CNT content because of the low interfacial tension between PE and PP (γ PE-PP  = 0.8−1.2 mN/m). Remarkable enhancement in tensile strength was obtained with the increase in nanotubes concentration. The blend’s electrical percolation threshold concentration was found to be in the range of 1–1.5 wt% CNT, which is lower than that of the CNT/PE nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR et al (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28. doi:10.1016/j.polymer.2011.10.063

    Article  CAS  Google Scholar 

  3. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944. doi:10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  4. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41:1345–1367. doi:10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  5. Byrne MT, Gun’ko YK (2010) Recent advances in research on carbon nanotube-polymer composites. Adv Mater 22:1672–1688. doi:10.1002/adma.200901545

    Article  CAS  Google Scholar 

  6. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498. doi:10.1016/j.compscitech.2008.06.018

    Article  CAS  Google Scholar 

  7. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205. doi:10.1021/ma060733p

    Article  CAS  Google Scholar 

  8. Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49:89–112. doi:10.1016/j.mser.2005.04.002

    Article  Google Scholar 

  9. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos A Appl Sci Manuf 42:2126–2142. doi:10.1016/j.compositesa.2011.08.005

    Article  Google Scholar 

  10. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22. doi:10.1016/j.carbon.2008.09.039

    Article  CAS  Google Scholar 

  11. Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep. doi:10.1016/j.mser.2013.06.001

  12. Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D et al (2014) Release characteristics of selected carbon nanotube polymer composites. Carbon 68:33–57. doi:10.1016/j.carbon.2013.11.042

    Article  CAS  Google Scholar 

  13. Pillai SK, Ray SS. Epoxy-based carbon nanotubes reinforced composites. Advances in nanocomposites—synthesis, characterization and industrial applications, InTech.; 2011

  14. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–322. doi:10.1557/mrs2007.229

    Article  CAS  Google Scholar 

  15. Al-Saleh MH, Saadeh WH, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60:146–156. doi:10.1016/j.carbon.2013.04.008

    Article  CAS  Google Scholar 

  16. Al-Saleh MH, Al-Anid HK, Hussain YA (2013) CNT/ABS nanocomposites by solution processing: proper dispersion and selective localization for low percolation threshold. Compos A Appl Sci Manuf 46:53–59. doi:10.1016/j.compositesa.2012.10.010

    Article  CAS  Google Scholar 

  17. Brigandi PJ, Cogen JM, Pearson RA (2014) Electrically conductive multiphase polymer blend carbon-based composites. Polym Eng Sci 54:1–16. doi:10.1002/pen.23530

    Article  CAS  Google Scholar 

  18. Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563. doi:10.1016/j.progpolymsci.2014.04.002

    Article  CAS  Google Scholar 

  19. Utracki LA (2002) Compatibilization of polymer blends. Can J Chem Eng 80:1008–1016. doi:10.1002/cjce.5450800601

    Article  CAS  Google Scholar 

  20. Al-Saleh MH, Sundararaj U (2009) Mechanical properties of carbon black-filled polypropylene/polystyrene blends containing styrene-butadiene-styrene copolymer. Polym Eng Sci 49:693–702. doi:10.1002/pen.21301

    Article  CAS  Google Scholar 

  21. Bhagat NA, Shrivastava NK, Suin S, Maiti S, Khatua BB (2013) Development of electrical conductivity in PP/HDPE/MWCNT nanocomposite by melt mixing at very low loading of MWCNT. Polym Compos 34:787–798. doi:10.1002/pc.22491

    Article  CAS  Google Scholar 

  22. Yu F, Deng H, Zhang Q, Wang K, Zhang C, Chen F et al (2013) Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer 54:6425–6436. doi:10.1016/j.polymer.2013.09.047

    Article  CAS  Google Scholar 

  23. Yui H, Wu G, Sano H, Sumita M, Kino K (2006) Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47:3599–3608. doi:10.1016/j.polymer.2006.03.064

    Article  CAS  Google Scholar 

  24. Zhang C, Yi XS, Yui H, Asai S, Sumita M (1998) Selective location and double percolation of short carbon fiber filled polymer blends: high-density polyethylene/isotactic polypropylene. Mater Lett 36:186–190. doi:10.1016/S0167-577X(98)00023-8

    Article  CAS  Google Scholar 

  25. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271. doi:10.1007/BF00310802

    Article  CAS  Google Scholar 

  26. Fenouillot F, Cassagnau P, Majesté J-C (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50:1333–1350. doi:10.1016/j.polymer.2008.12.029

    Article  CAS  Google Scholar 

  27. Wu S. Surface and interfacial tensions of polymers, oligomers, plasticizers, and organic pigments. The Wiley Database of Polymer Properties, John Wiley & Sons, Inc.; 2003

  28. Cardinaud R, McNally T (2013) Localization of MWCNTs in PET/LDPE blends. Eur Polym J 49:1287–1297. doi:10.1016/j.eurpolymj.2013.01.007

    Article  CAS  Google Scholar 

  29. Pötschke P, Paul DR (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci Part C Polym Rev 43:87–141. doi:10.1081/MC-120018022

    Article  Google Scholar 

  30. Willemse RC, Posthuma de Boer A, van Dam J, Gotsis AD (1998) Co-continuous morphologies in polymer blends: a new model. Polymer 39:5879–5887. doi:10.1016/S0032-3861(97)10200-2

    Article  CAS  Google Scholar 

  31. Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A et al (1994) Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 27:1972–1974. doi:10.1021/ma00085a049

    Article  CAS  Google Scholar 

  32. Al-Saleh MH, Sundararaj U (2008) An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Compos A Appl Sci Manuf 39:284–293. doi:10.1016/j.compositesa.2007.10.010

    Article  Google Scholar 

  33. Al-Saleh MH, Al-Anid HK, Hussain YA (2013) Electrical double percolation and carbon nanotubes distribution in solution processed immiscible polymer blend. Synth Met 175:75–80. doi:10.1016/j.synthmet.2013.05.004

    Article  CAS  Google Scholar 

  34. Stöckelhuber KW, Das A, Jurk R, Heinrich G (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51:1954–1963. doi:10.1016/j.polymer.2010.03.013

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Support Fund, Ministry of Higher Education, Amman, Jordan (Grant Number Bas/2/05/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Al-Saleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Saleh, M.H. Carbon nanotube-filled polypropylene/polyethylene blends: compatibilization and electrical properties. Polym. Bull. 73, 975–987 (2016). https://doi.org/10.1007/s00289-015-1530-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1530-1

Keywords

Navigation