Skip to main content
Log in

On the experimental validation of a mesoscopic grain boundary sliding-controlled flow model for structural superplasticity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Different mechanisms have been suggested by many authors as controlling the rate of superplastic flow in different materials. From the viewpoint of computational effort and aesthetics, it is highly desirable to explain the phenomenon, independent of the material/system considered, on a common basis. With this aim, a mesoscopic grain boundary sliding-controlled deformation model was proposed sometime ago as being responsible for superplastic flow in materials of different kinds. In this paper, a rigorous numerical computational procedure for the experimental validation of the model, which takes into account all the physical requirements of the model, is presented. The soundness of the new procedure is established by analysing the experimental data pertaining to many systems belonging to different classes of materials, and matching the results of the analysis with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. ΔF 0 is the sum of Etrans, the change in the internal energy when the oblate spheroid gets sheared in the absence of the surrounding matrix, Eel, the elastic strain energy of the deformed oblate spheroid and Eint, the interaction energy of the elastic field. It is assumed that the constrained shear transformation (inside the solid matrix) occurs without any heat flow. ΔF 0 can be interpreted equivalently as the enthalpy change of the deformed oblate spheroid, the enthalpy change of the deformed oblate spheroid plus matrix or the change of internal energy of the deformed oblate spheroid, matrix and loading mechanism regarded as a simple thermodynamic system. (Read ‘Helmholtz free energy’ for ‘internal energy’ and ‘Gibbs free energy’ for ‘enthalpy’ [22]).

References

  1. Davies GJ, Edington JW, Cutler CP, Padmanabhan KA (1970) J Mater Sci 5:1091. doi:10.1007/BF02403283

    Article  CAS  ADS  Google Scholar 

  2. Padmanabhan KA, Davies GJ (1980) Superplasticity: mechanical and structural aspects, environmental effects, fundamentals and applications. Springer-Verlag, Berlin-Heidelberg

    Book  Google Scholar 

  3. Kaĭbyshev OA (1992) Superplasticity of Alloys, Intermetallides, and Ceramics. Springer-Verlag, New York

    Book  Google Scholar 

  4. Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Padmanabhan KA, Vasin RA, Enikeev FU (2001) Superplastic flow: common basis for a ubiquitous phenomenon. Springer, New York

    Book  Google Scholar 

  6. Padmanabhan KA, Gleiter H (2012) Curr Opin Solid State Mater Sci 16:243. doi:10.1016/j.cossms.2012.05.001

    Article  CAS  ADS  Google Scholar 

  7. Karato S, Zhang S, Wenk H (1995) Science 270:458. doi:10.1126/science.270.5235.458

    Article  CAS  ADS  Google Scholar 

  8. Goldsby DL, Kohlstedt DL (2001) J Geophys Res Solid Earth 106:11017. doi:10.1029/2000JB900336

    Article  Google Scholar 

  9. Huang JY, Chen S, Wang ZQ et al (2006) Nature 439:281. doi:10.1038/439281a

    Article  PubMed  CAS  ADS  Google Scholar 

  10. Padmanabhan KA, Schlipf J (1996) Mater Sci Technol 12:391. doi:10.1179/026708396790165920

    Article  CAS  Google Scholar 

  11. Venkatesh TA, Bhattacharya SS, Padmanabhan KA, Schlipf J (1996) Mater Sci Technol 12:635. doi:10.1179/026708396790122486

    Article  CAS  Google Scholar 

  12. Hahn H, Padmanabhan KA (1997) Philos Mag Part B 76:559. doi:10.1080/01418639708241122

    Article  CAS  ADS  Google Scholar 

  13. Betz U, Padmanabhan KA, Hahn H (2001) J Mater Sci 36:5811. doi:10.1023/A:1012956005571

    Article  CAS  ADS  Google Scholar 

  14. Padmanabhan KA, Gleiter H (2004) Mater Sci Eng 381:28. doi:10.1016/j.msea.2004.02.054

    Article  Google Scholar 

  15. Padmanabhan KA, Dinda GP, Hahn H, Gleiter H (2007) Mater Sci Eng 452–453:462. doi:10.1016/j.msea.2006.10.084

    Article  Google Scholar 

  16. Padmanabhan KA, Basariya MIR (2009) Int J Mater Res Former Z Fuer Met 100:1543. doi:10.3139/146.110218

    Article  CAS  Google Scholar 

  17. Padmanabhan KA, Basariya MR (2009) Mater Sci Eng 527:225. doi:10.1016/j.msea.2009.07.059

    Article  Google Scholar 

  18. Padmanabhan KA (2009) J Mater Sci 44:2226. doi:10.1007/s10853-008-3076-1

    Article  CAS  ADS  Google Scholar 

  19. Sripathi S, Padmanabhan KA (2012) Mater Sci Forum 735:246. doi:10.4028/www.scientific.net/MSF.735.246

    Article  Google Scholar 

  20. Mukherjee AK (2002) Mater Sci Eng 322:1. doi:10.1016/S0921-5093(01)01115-7

    Article  Google Scholar 

  21. Lagneborg R, Bergman B (1976) Met Sci 10:20. doi:10.1179/030634576790431462

    Article  CAS  Google Scholar 

  22. Eshelby JD (1957) Proc R Soc Lond Ser Math Phys Sci 241:376. doi:10.1098/rspa.1957.0133

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Wolf D (1990) Acta Met Mater 38:781. doi:10.1016/0956-7151(90)90030-K

    Article  CAS  Google Scholar 

  24. Wolf D (1990) Acta Met Mater 38:791. doi:10.1016/0956-7151(90)90031-B

    Article  CAS  Google Scholar 

  25. Xie GM, Ma ZY, Geng L, Chen RS (2008) J Mater Res 23:1207. doi:10.1557/JMR.2008.0164

    Article  CAS  ADS  Google Scholar 

  26. Watanabe H, Mukai T, Ishikawa K et al (2001) Mater Trans 42:157

    Article  CAS  Google Scholar 

  27. Yan H, Chen R, Han E (2009) Sci China Ser E: Technol Sci 52:166. doi:10.1007/s11431-008-0293-4

    Article  CAS  Google Scholar 

  28. Kim Y, Bae D (2004) Mater Trans 45:3298

    Article  CAS  Google Scholar 

  29. Kumar N, Raman KS, Sastry DH, Little EA (1990) J Mater Sci 25:753. doi:10.1007/BF00714105

    Article  CAS  ADS  Google Scholar 

  30. Mohamed FA, Ahmed MMI, Langdon TG (1977) Met Trans 8:933. doi:10.1007/BF02661575

    Article  Google Scholar 

  31. Shei S-A, Langdon TG (1978) Acta Met 26:639. doi:10.1016/0001-6160(78)90116-5

    Article  CAS  Google Scholar 

  32. Charit I, Mishra RS (2005) Acta Mater 53:4211. doi:10.1016/j.actamat.2005.05.021

    Article  CAS  Google Scholar 

  33. Komura S, Horita Z, Furukawa M et al (2001) Met Mater Trans 32:707. doi:10.1007/s11661-001-0087-9

    Google Scholar 

  34. Wakai F, Nagano T (1991) J Mater Sci 26:241. doi:10.1007/BF00576058

    Article  CAS  ADS  Google Scholar 

  35. Sharif AA, Mecartney ML (2004) J Eur Ceram Soc 24:2041. doi:10.1016/S0955-2219(03)00354-6

    Article  CAS  Google Scholar 

  36. Chen T, Mecartney ML (2005) J Am Ceram Soc 88:1004. doi:10.1111/j.1551-2916.2005.00190.x

    Article  CAS  Google Scholar 

  37. Chen T, Mohamed FA, Mecartney ML (2006) Acta Mater 54:4415. doi:10.1016/j.actamat.2006.05.002

    Article  CAS  Google Scholar 

  38. Dillon RP, Kim D-K, Trujillo JE et al (2008) J Mater Res 23:556. doi:10.1557/JMR.2008.0071

    Article  CAS  ADS  Google Scholar 

  39. Xu X, Nishimura T, Hirosaki N et al (2006) Acta Mater 54:255. doi:10.1016/j.actamat.2005.09.005

    Article  CAS  Google Scholar 

  40. Padmanabhan KA, Davies GJ (1973) Phys Status Solidi 18:295. doi:10.1002/pssa.2210180130

    Article  CAS  ADS  Google Scholar 

  41. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  42. Gale WF, Totemeier TC (2003) Smithells metals reference book. Butterworth-Heinemann, Oxford

    Google Scholar 

  43. Sakaguchi S, Murayama N, Kodama Y, Wakai F (1991) J Mater Sci Lett 10:282. doi:10.1007/BF00735658

    Article  CAS  Google Scholar 

  44. Auerkari P (1996) Mechanical and physical properties of engineering alumina ceramics. Technical Research Centre of Finland, Finland

    Google Scholar 

  45. Vogelgesang R, Grimsditch M, Wallace JS (2000) Appl Phys Lett 76:982. doi:10.1063/1.125913

    Article  CAS  ADS  Google Scholar 

  46. Fate WA (1975) J Appl Phys 46:2375. doi:10.1063/1.321916

    Article  CAS  ADS  Google Scholar 

  47. Yadava RK, Padmanabhan KA (1979) Mater Sci Eng 37:127. doi:10.1016/0025-5416(79)90076-4

    Article  CAS  Google Scholar 

  48. Bokshteĭn BS, Bokshteĭn SZ, Zhukhovitskiĭ AA (1985) Thermodynamics and kinetics of diffusion in solids. Oxonian Press, Oxford

    Google Scholar 

  49. Grewer M, Markmann J, Karos R et al (2011) Acta Mater 59:1523. doi:10.1016/j.actamat.2010.11.016

    Article  CAS  Google Scholar 

  50. Matsuki K, Minami K, Tokizawa M, Murakami Y (1979) Met Sci 13:619

    CAS  Google Scholar 

  51. Chung DW, Cahoon JR (1979) Met Sci 13:635

    Article  CAS  Google Scholar 

  52. Owen DM, Chokshi AH (1998) Acta Mater 46:667. doi:10.1016/S1359-6454(97)00251-6

    Article  CAS  Google Scholar 

  53. Kim W-Y, Hanada S, Takasugi T (1998) Acta Mater 46:3593. doi:10.1016/S1359-6454(98)00029-9

    Article  CAS  Google Scholar 

  54. Nieh TG, Oliver WC (1989) Scr Met 23:851. doi:10.1016/0036-9748(89)90258-5

    Article  CAS  Google Scholar 

  55. Sun J, He YH, Wu JS (2002) Mater Sci Eng 329–331:885. doi:10.1016/S0921-5093(01)01646-X

    Article  Google Scholar 

  56. Wegmann G, Gerling R, Schimansky F-P et al (2002) Intermetallics 10:511. doi:10.1016/S0966-9795(02)00026-2

    Article  CAS  Google Scholar 

  57. Nieh TG, Wadsworth J (1997) Mater Sci Eng 239–240:88. doi:10.1016/S0921-5093(97)00564-9

    Article  Google Scholar 

  58. Kaibyshev R, Avtokratova E, Apollonov A, Davies R (2006) Scr Mater 54:2119. doi:10.1016/j.scriptamat.2006.03.020

    Article  CAS  Google Scholar 

  59. Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) Scr Mater 50:511. doi:10.1016/j.scriptamat.2003.10.021

    Article  CAS  Google Scholar 

  60. Nieh TG, Hsiung LM, Wadsworth J, Kaibyshev R (1998) Acta Mater 46:2789. doi:10.1016/S1359-6454(97)00452-7

    Article  CAS  Google Scholar 

  61. Fujino S, Kuroishi N, Yoshino M et al (1997) Scr Mater 37:673. doi:10.1016/S1359-6462(97)00153-X

    Article  CAS  Google Scholar 

  62. Watanabe H, Mukai T, Ishikawa K et al (2001) Mater Sci Eng 307:119. doi:10.1016/S0921-5093(00)01974-2

    Article  Google Scholar 

  63. Wang T, Huang J (2001) Mater Trans 42:1781

    Article  CAS  Google Scholar 

  64. Nishida Y, Sigematsu I, Arima H et al (2002) J Mater Sci Lett 21:465. doi:10.1023/A:1015378405808

    Article  CAS  Google Scholar 

Download references

Acknowledgement

N.B. The computer programme used to carry out the present analysis can be obtained on request for use, on condition that the source should be acknowledged whenever use is made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Padmanabhan.

Appendix A: Application to intermetallics, dispersion strengthened alloys and composites

Appendix A: Application to intermetallics, dispersion strengthened alloys and composites

(This section was completed in collaboration with M. Raviathul Basaria).

Table 5 presents the results obtained by the procedure outlined in the main paper. Systems 1–4 were studied in [14, 15], systems 5–9 in [16] and the rest in [17]. As before, the required material properties were extracted from [41, 42, 48]. For comparison, the values obtained earlier are also included in Table 5. The measure of prediction accuracy was defined, as before, as the larger value between \( \left( {\dot{\varepsilon }_{\text{experimental}} /\dot{\varepsilon }_{\text{predicted}} } \right) \) and \( \left( {\dot{\varepsilon }_{\text{predicted}} /\dot{\varepsilon }_{\text{experimental}} } \right) \) ratios (Tol).

Table 5 Details and the results of the intermetallic and other systems analysed

In this case also, in accordance with theory, the value of γ 0 for a given system increases with increasing temperature. In the earlier numerical validation procedures, γ 0 was assumed (as an approximation) to be independent of temperature and system. A few more points are also worthy of note: for systems 1–4 the accuracy of predictions has improved with the present algorithm. For systems 3 and 4 of similar composition, in each paper the grain size and temperature are different. In these cases the values of ΔF 0 and γ 0 at the common temperature of 1723 K are found to agree very well, which demonstrates the robustness of the present algorithm. For the rest of the systems, it is noted that in the earlier method [16, 17] ΔF 0 value was calculated at each temperature for each datum point and then a mean value was obtained which gave rise to very accurate predictions. But that method did not use the method of least squares, as done here, which makes the statistics used here more formal/correct.

The correlation coefficient for the relation between γ 0 and T for the Ti–Al systems (systems 7–9) is 0.9983; similarly for the aluminium-based systems 10–12, of similar composition, a correlation coefficient of 0.9159 is obtained. System 13 is omitted from this correlation although it is also an Al alloy because of its considerably different composition.

See Table 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sripathi, S., Padmanabhan, K.A. On the experimental validation of a mesoscopic grain boundary sliding-controlled flow model for structural superplasticity. J Mater Sci 49, 199–210 (2014). https://doi.org/10.1007/s10853-013-7693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7693-y

Keywords

Navigation