Skip to main content
Log in

3D modelling of ferrite and austenite grain coarsening using real-valued cellular automata based on transition function

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new extended technique for 3D modelling of normal grain growth in low carbon steels is presented in this paper. This technique is based on real-valued cellular automata with the use of a local transition function that allows it to be applied to materials with both fcc and bcc lattices with the grain growth being easily simulated in ferrite as well as in austenite cases. The simulated data were calibrated with four sets of experimental data for isothermal grain coarsening in austenite, alpha- and delta-ferrites. The obtained results cogently demonstrate that there is a good agreement between simulated and experimental data across a wide range of temperatures. The new model developed in this paper, allows for the identification of two different mechanisms of grain growth in austenite. It is also shown in this paper that the newly presented approach can be used to extract additional parameters from the grain growth process, such as grain boundary velocity, mobility and driving force, which are hardly accessible even via real-time experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hallberg H (2011) Metals 1:16. doi:10.3390/met1010016

    Article  CAS  Google Scholar 

  2. Janssens KGF (2010) Math Comput Simul 80:1361. doi:10.1016/j.matcom.2009.02.011

    Article  Google Scholar 

  3. Xu X, Mahfouf M, Banks SP, Zhang Q (2011) The european congress and exhibition on advanced materials and processes (Euromat). Montpellier, France

    Google Scholar 

  4. Raabe D (2002) Annu Rev Mater Res 32:53. doi:10.1146/annurev.matsci.32.090601.152855

    Article  CAS  Google Scholar 

  5. Raabe D, Hantcherli L (2005) Comput Mater Sci 34:299. doi:10.1016/j.commatsci.2004.12.067

    Article  CAS  Google Scholar 

  6. Zheng C, Raabe D, Li D (2012) Acta Mater 60:4768

    Article  CAS  Google Scholar 

  7. D Raabe, RC Becker (2000) Model Simul Mater Sci Eng 8. doi:10.1088/0965-0393/8/4/304

  8. Raabe D (1999) Philos Mag A 79:2339. doi:10.1080/01418619908214288

    Article  CAS  Google Scholar 

  9. Wang C, Liu G, Wang G, Xue W (2007) Mat Sci Eng A Struct 454–455:547. doi:10.1016/j.msea.2006.12.013

    Article  Google Scholar 

  10. Wejrzanowski T, Batorski K, Kurzydłowski KJ (2006) Mater Charact 56:336. doi:10.1016/j.matchar.2005.09.010

    Article  CAS  Google Scholar 

  11. Humphreys J, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford

    Google Scholar 

  12. Ding HL, He YZ, Liu LF, Ding WJ (2006) J Cryst Growth 293:489. doi:10.1016/j.jcrysgro.2006.05.060

    Article  CAS  Google Scholar 

  13. Wolfram S (2002) A new kind of science. Wolfram Media, IL

    Google Scholar 

  14. Rollett AD, Raabe D (2001) Comput Mater Sci 21:69

    Article  Google Scholar 

  15. Raabe D (2000) Acta Mater 48:1617

    Article  CAS  Google Scholar 

  16. Hu H, Rath BB (1970) Metall Trans 1:3181

    Google Scholar 

  17. Gleiter H (1969) Acta Metall Mater 17:853

    Article  CAS  Google Scholar 

  18. Haessner F (1975) J Phys-Paris 36:345. doi:10.1051/jphyscol:1975435

    Google Scholar 

  19. Liu Y, Baudin T, Penelle R (1996) Scripta Mater 34:1679

    Article  CAS  Google Scholar 

  20. Hu H (1974) Can Metall Quart 13:275

    Article  CAS  Google Scholar 

  21. Moon J, Lee J, Lee C (2007) Mat Sci Eng A Struct 459:40. doi:10.1016/j.msea.2006.12.073

    Article  Google Scholar 

  22. Zhou T, O’malley RJ, Zurob HS (2010) Metall Mater Trans A 41:2112. doi:10.1007/s11661-010-0246-y

    Article  Google Scholar 

  23. W Yu (2002) Cellular automata modelling of austenite grain coarsening during reheating. PhD thesis. The University of Sheffield, p 183

  24. Beck PA, Kremer JC, Dewer LJ, Holzworth ML (1948) Trans AIMME 175:372

    Google Scholar 

  25. Vandermeer RA, Hu H (1994) Acta Metall Mater 42:3071

    Article  CAS  Google Scholar 

  26. Rabkin E (1999) Interface Sci 7:297

    Article  CAS  Google Scholar 

  27. Erb U, Gleiter H (1979) Scripta Metall Mater 13:61. doi:10.1016/0036-9748(79)90390-9

    Article  CAS  Google Scholar 

  28. Zheng L, Yuan Z-x, Song S-h, Xi T-h, Wang Q (2012) J Iron Steel Res Int 19:73. doi:10.1016/s1006-706x(12)60063-6

    Article  CAS  Google Scholar 

  29. Simpson CJ, Aust KT (1972) Surf Sci 31:479

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the UK-Engineering and Physical Sciences Research Council (UK-EPSRC) for their financial support under Grant No. EP/F023464/1. The authors would also like to thank Professor A. Howe (Tata Steel), Dr C. Pinna, Dr Y. Lan, and Professor P. Tsakiropoulos for their helpful comments during the course of this research work. Finally, they wish to thank the Editor and the anonymous reviewers for their comments which helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye. Vertyagina.

Additional information

This work was performed while the first author worked at the University of Sheffield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertyagina, Y., Mahfouf, M. & Xu, X. 3D modelling of ferrite and austenite grain coarsening using real-valued cellular automata based on transition function. J Mater Sci 48, 5517–5527 (2013). https://doi.org/10.1007/s10853-013-7346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7346-1

Keywords

Navigation