Skip to main content
Log in

Cellular automata simulation of grain growth of powder metallurgy Ni-based superalloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Primary γ′ phase instead of carbides and borides plays an important role in suppressing grain growth during solution at 1433 K of Ni-based FGH98 superalloys. Results illustrate that as-fabricated FGH98 superalloy has equiaxed grain structure, and after heat treatment, grains remain equiaxed but grow larger. In order to clarify the effects of the size and volume fraction of the primary γ′ phase on the grain growth during heat treatment, a 2D cellular automata (CA) model was established based on the thermal activation and the lowest energy principle. The CA results are compared with the experimental results and show a good fit with an error less than 10%. Grain growth kinetics are depicted, and simulations in real time for various sizes and volume fractions of primary γ′ particles work out well with the Zener relation. The coefficient n value which reflects the pinning ability in Zener relation is theoretically calculated, and its minimum value is 0.23 when the radius of primary γ′ phase is 2.8 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa Rao, U. Borah, Mater. Charact. 146 (2018) 217–236.

    Article  Google Scholar 

  2. J.C. Williams, E.A. Starke, Acta Mater. 51 (2003) 5775–5799.

    Article  Google Scholar 

  3. C. Dong, Z. Liu, Z. Chen, H. Bao, X. Wang, Z. Liu, J. Alloy. Compd. 825 (2020) 154106.

    Article  Google Scholar 

  4. T. Osada, Y. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, H. Harada, Acta Mater. 61 (2013) 1820–1829.

    Article  Google Scholar 

  5. Y. Brechet, M. Militzer, Scripta Mater. 52 (2006) 1299–1303.

    Article  Google Scholar 

  6. L. Du, S. Yang, P. Zhang, H. Du, Compos. Interfaces 25 (2018) 357–368.

    Article  Google Scholar 

  7. K. Song, M. Aindow, Mater. Sci. Eng. A 479 (2008) 365–372.

    Article  Google Scholar 

  8. T.M. Rodgers, J.D. Madison, V. Tikare, Comput. Mater. Sci. 135 (2017) 78–89.

    Article  Google Scholar 

  9. D. Raabe, Acta Mater. 48 (2000) 1617–1628.

    Article  Google Scholar 

  10. C.S. Zhu, S. Xu, L. Feng, D. Han, K.M. Wang, Comput. Mater. Sci. 160 (2019) 53–61.

    Article  Google Scholar 

  11. I. Toda-Caraballo, C. Capdevila, G. Pimentel, C.G. DeAndres, Comput. Mater. Sci. 68 (2013) 95–106.

    Article  Google Scholar 

  12. M. Bakhtiari, M. Seyed Salehi, Comput. Mater. Sci. 149 (2018) 1–13.

    Article  Google Scholar 

  13. M.S. Chen, Z.H. Zou, Y.C. Lin, H.B. Li, G.Q. Wang, J. Mater. Sci. Technol. 35 (2019) 1403–1411.

    Article  Google Scholar 

  14. O. Zinovieva, V. Romanova, R. Balokhonov, Mater. Sci. Eng. A 832 (2022) 142447.

    Article  Google Scholar 

  15. Z. Li, J. Wang, H. Huang, J. Alloy. Compd. 791 (2019) 411–422.

    Article  Google Scholar 

  16. Y. He, H. Ding, L. Liu, K. Shin, Mater. Sci. Eng. A 429 (2006) 236–246.

    Article  Google Scholar 

  17. P. Nie, O.A. Ojo, Z. Li, Acta Mater. 77 (2014) 85–95.

    Article  Google Scholar 

  18. C. Zheng, N. Xiao, D. Li, Y. Li, Comput. Mater. Sci. 44 (2008) 507–514.

    Article  Google Scholar 

  19. V. Marx, F.R. Reher, G. Gottstein, Acta Mater. 47 (1999) 1219–1230.

    Article  Google Scholar 

  20. Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, M.S. Chen, Mater. Sci. Eng. A 626 (2015) 432–440.

    Article  Google Scholar 

  21. Y.J. Lan, D.Z. Li, Y.Y. Li, Acta Mater. 52 (2004) 1721–1729.

    Article  Google Scholar 

  22. D. Raabe, L. Hantcherli, Comput. Mater. Sci. 34 (2005) 299–313.

    Article  Google Scholar 

  23. F. Han, B. Tang, H. Kou, J. Li, Y. Feng, Model. Simul. Mater. Sci. Eng. 23 (2015) 065010.

    Article  Google Scholar 

  24. D. Weygand, Y. Bréchet, J. Lépinoux, Mater. Sci. Eng. A 292 (2000) 34–39.

    Article  Google Scholar 

  25. G. Huang, G.Q. Liu, M. Feng, M. Zhang, B. Hu, H. Wang, J. Alloy. Compd. 747 (2018) 1062–1072.

    Article  Google Scholar 

  26. S. Liu, Y.C. Shin, Comput. Mater. Sci. 183 (2020) 109889.

    Article  Google Scholar 

  27. E.A. Holm, N. Zacharopoulos, D.J. Srolovitz, Acta Mater. 46 (1998) 953–964.

    Article  Google Scholar 

  28. M. Wang, Y. Yin, J. Zhou, H. Nan, T. Wang, W. Li, Canad. J. Phys. 94 (2016) 1353–1364.

    Article  Google Scholar 

  29. X. Song, G. Liu, J. Mater. Sci. Technol. 14 (1998) 506–510.

    Google Scholar 

  30. K. Song, M. Aindow, Metall. Mater. Trans. A 38 (2007) 1–6.

    Article  Google Scholar 

  31. R. Li, E.R. Homer, C. Hong, Y. Zhang, D.J. Jensen, Scripta Mater. 211 (2022) 114489.

    Article  Google Scholar 

  32. B.R. Patterson, Y. Liu, Metall. Mater. Trans. A 23 (1992) 2481–2482.

    Article  Google Scholar 

  33. O. Hundert, E. Nes, N. Ryum, Acta Metall. 37 (1989) 129–133.

    Article  Google Scholar 

  34. M.P. Anderson, G.S. Grest, R.D. Doherty, K. Li, D.J. Srolovitz, Scripta Metall. 23 (1989) 753–758.

    Article  Google Scholar 

  35. A. Mallick, Comput. Mater. Sci. 67 (2013) 27–34.

    Article  Google Scholar 

  36. C. Schwarze, R.D. Kamachali, I. Steinbach, Acta Mater. 106 (2016) 59–65.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Major Science and Technology Project (2017-VI-0009-0079) and Basic and Applied Basic Research Foundation of Guangdong Province (2020B0301030001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Ethics declarations

Conflict of interest

There is no conflict of interests in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Yl., Liu, Ss., Lu, Rg. et al. Cellular automata simulation of grain growth of powder metallurgy Ni-based superalloy. J. Iron Steel Res. Int. 30, 838–848 (2023). https://doi.org/10.1007/s42243-023-00921-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00921-9

Keywords

Navigation