Skip to main content
Log in

Study of Grain-Growth Kinetics in Delta-Ferrite and Austenite with Application to Thin-Slab Cast Direct-Rolling Microalloyed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-temperature grain-growth kinetics in delta-ferrite and austenite is investigated. The delta-ferrite growth kinetics was observed directly on a model alloy that contained 2.5 wt pct aluminum in order to stabilize delta-ferrite down to room temperature. The gamma grain-growth kinetics was by etching the former austenite grain boundaries in a precipitate-free variant of APIX60 steel. At high temperatures and in the absence of precipitation, the growth kinetics in both delta-ferrite and austenite appeared to follow a simple parabolic growth law. The findings are applied to the problem of grain-size control during the process of thin-slab casting direct rolling (TSCDR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The recrystallization treatment consisted of cold rolling followed by annealing at 1023 K (750 °C). The cold reduction steps were 30, 55, and 55 pct. The annealing times were 4 h after the first and second reductions and 8 h after the third reduction.

  2. THERMO-CALC is a trademark of Thermo-Calc, Stockholm.

References

  1. M. Korchynsky: 33rd McMaster Symp. on Iron & Steelmaking: Thinner Slab Casting, G.A. Irons, ed., McMaster University, Hamilton, 2005, pp. 251–59.

  2. J. Muller, W. Henning, and C. Bilgen: 33rd McMaster Symp. on Iron & Steelmaking: Thinner Slab Casting, G.A. Irons, ed., McMaster University, Hamilton, 2005, pp. 240–50.

  3. R. Wang, C.I. Garcia, M. Hua, H. Zhang, and A.J. DeArdo: Mater. Sci. Forum, 2005, vols. 500–501, pp. 229–36.

    Article  Google Scholar 

  4. P. Uranga, A.I. Fernández, B. López, and J.M. Rodriguez-Ibabe: Mater. Sci. Forum, 2005, vols. 500–501, pp. 245–52.

    Article  Google Scholar 

  5. C.P. Reip, W. Hennig, J. Kempken, and R. Hagmann: Mater. Sci. Forum, 2005, vols. 500–501, pp. 287–94.

    Article  Google Scholar 

  6. H. Zhang, G. Pan, R. Wang, and C. Liu: Mater. Sci. Forum, 2005, vols. 500–501, pp. 295–300.

    Article  Google Scholar 

  7. A. Bakkaloglu: Mater. Lett., 2002, vol. 56, pp. 200–09.

    CAS  Google Scholar 

  8. G. Zhu and S.V. Subramanian: Mater. Sci. Eng. A, 2006, vol. 426, pp. 235–39.

    Article  Google Scholar 

  9. P.D. Hodgson, H. Beladi, and M.R. Barnett: Mater. Sci. Forum, 2005, vols. 500–501, pp. 39–48.

    Article  Google Scholar 

  10. M. Gómez and S.F. Medina: Mater. Sci. Forum, 2005, vols. 500–501, pp. 147–54.

    Article  Google Scholar 

  11. N.S. Pottore, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1871–80.

    CAS  ADS  Google Scholar 

  12. T. Gladman: The Physical Metallurgy of Microalloyed Steel, Institute of Materials, London, 1997, pp. 159–61.

    Google Scholar 

  13. Available from THERMO-CALC software, www.thermocalc.com.

  14. C. Zener: quoted by C. Smith, Trans. AIME, 1948, vol. 175, pp. 15–51.

  15. J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789–98.

    Article  CAS  Google Scholar 

  16. H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy: Acta Mater., 2002, vol. 50, pp. 3075–92.

    Article  CAS  Google Scholar 

  17. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Oxford, UK, 2004, pp. 335–36.

    Google Scholar 

  18. D. Turnbull: Trans. AIME, 1951, vol. 191, pp. 661–65.

    Google Scholar 

  19. D.S. Wilkinson: Mass Transport in Solids and Fluids, Cambridge University Press, Cambridge, UK, 2000, pp. 37–39.

    Google Scholar 

  20. M.T. Nagata, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3099–3110.

    Article  CAS  Google Scholar 

  21. O. Kwon and A.J. DeArdo: Acta Metall., 1991, vol. 39, pp. 529–38.

    Article  CAS  Google Scholar 

  22. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 277–86.

    Article  CAS  ADS  Google Scholar 

  23. H. Yin, T. Emi, and H. Shibata: Acta Mater., 1999, vol. 47, pp. 1523–35.

    Article  CAS  Google Scholar 

  24. H. Suito, H. Ohta, and S. Morioka: ISIJ Int., 2006, vol. 46, pp. 840–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. J. Thomson, McMaster University, is gratefully acknowledged for valuable discussions. We are also grateful for the support of the McMaster Steel Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem S. Zurob.

Additional information

Manuscript submitted September 17, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., O’malley, R.J. & Zurob, H.S. Study of Grain-Growth Kinetics in Delta-Ferrite and Austenite with Application to Thin-Slab Cast Direct-Rolling Microalloyed Steels. Metall Mater Trans A 41, 2112–2120 (2010). https://doi.org/10.1007/s11661-010-0246-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0246-y

Keywords

Navigation