Skip to main content
Log in

Discussion on the microstructural transients during strain reversal based on the effective equivalent strain concept

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A strain reversal applied for both under hot and cold workings produces a microstructural transient which manifests in different ways and at different scales. The evolution of the dislocation network during strain reversal is the result of the competition between two mechanisms. The first mechanism corresponds to the partial untangling and recovery of previously created dislocation network and the second one is associated to the build-up compatible with the current deformation condition. This study proposes a phenomenological formulation based on an effective equivalent strain concept to describe, in a simple way, the several experimental manifestations of the microstructural transient at grain and intragranular scales and its effect on the static recrystallisation kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rauch EF, Schmitt JH (1989) Mater Sci Eng A 113:441

    Article  Google Scholar 

  2. Kostryzhev AG, Strangwood M, Davis CL (2010) Metall Mater Trans A 41:1399

    Article  Google Scholar 

  3. Helbert AL, Feaugas X, Clavel M (1996) Metall Trans A 27:3043

    Article  Google Scholar 

  4. Zhonghua L, Haicheng G (1990) Metall Trans A 21:717

    Article  Google Scholar 

  5. Yoshida K, Brenner R, Bacroix B, Bouvier S (2011) Mater Sci Eng A 528:1037

    Article  Google Scholar 

  6. Hasegawa T, Yakou T, Kocks UF (1986) Mater Sci Eng 81:189

    Article  CAS  Google Scholar 

  7. Mataya MC, Carr MJ, Krauss G (1983) Mater Sci Eng 57:205

    Article  CAS  Google Scholar 

  8. Christodoulou N, Woo OT, MacEwen SR (1986) Acta Mater 8:1553

    Google Scholar 

  9. Nesterova EV, Bacroix B, Teodosiu C (2001) Mater Sci Eng A 309–310:495

    Google Scholar 

  10. Peeters B, Bacroix B, Teodosiu C, Van Houtte P, Aernoudt E (2001) Acta Mater 49:1621

    Article  CAS  Google Scholar 

  11. López-Pedrosa M, Wynne BP, Rainforth WM (2006) J Microsc 222:97

    Article  Google Scholar 

  12. Farag MM, Sellars CM, McG Tegart WJ (1968) Deformation under hot working conditions (Special Report No. 108). Iron Steel Institute, London, p 60

    Google Scholar 

  13. Zhu Q, Sellars CM (1997) In: McNelley TR (ed) Proceedings of Rex’96, the 3rd international conference on recrystallization and related phenomena, Monterey Institute of Advanced Studies, Monterey, California, USA, 1996, p 195

  14. Hasegawa T, Yakou T, Karashima S (1975) Mater Sci Eng 20:267

    Article  CAS  Google Scholar 

  15. Zhu Q, Sellars CM (2001) Scr Mater 45:41

    Article  CAS  Google Scholar 

  16. Lindh E, Hutchinson B, Ueyama S (1993) Scripta Metall 29:347

    Article  CAS  Google Scholar 

  17. Bartolomé R, Jorge-Badiola D, Astiazarán JI, Gutiérrez I (2003) Mater Sci Eng A 344:340

    Article  Google Scholar 

  18. Embury JD, Poole WJ, Koken E (1992) Scr Mater 27:1465

    Article  CAS  Google Scholar 

  19. McDonald DT, Bate PS, Hutchinson WB (2005) Mater Sci Technol 21:693

    Article  CAS  Google Scholar 

  20. Jorge-Badiola D, Lanzagorta JL, Gutiérrez I (2011) Metall Mater Trans A 42:2633

    Article  CAS  Google Scholar 

  21. Jorge-Badiola D, Gutiérrez I (2004) Acta Mater 52:333

    Article  CAS  Google Scholar 

  22. Humphreys FJ (1999) J Microsc 195:170

    Article  CAS  Google Scholar 

  23. Farag MM, Sellars CM, McG Tegart WJ (1968) Deformation under hot working conditions. Special Report No. 108, Iron and Steel Institute, London, p 60

  24. Delannay L, Mishin OV, Juul-Jensen D, Van Houtte P (2001) Acta Mater 49:2441

    Article  CAS  Google Scholar 

  25. Verbeken K, Kestens L (2002) Mater Sci Forum 408–412:559

    Article  Google Scholar 

  26. Jorge-Badiola D, Iza-Mendia A, Gutiérrez I (2005) Mater Sci Eng A 394:445

    Article  Google Scholar 

  27. Tóth LS, Estrin Y, Lapovok R, Gu C (2010) Acta Mater 58:1782

    Article  Google Scholar 

  28. Feaugas X, Haddou H (2007) Phil Mag 87:989

    Article  CAS  Google Scholar 

  29. Jorge-Badiola D, Iza-Mendia A, Gutiérrez I (2009) J Microsc 235:36

    Article  CAS  Google Scholar 

  30. Jorge-Badiola D, Iza-Mendia A, Gutiérrez I (2007) J Microsc 228:373

    Article  CAS  Google Scholar 

  31. He W, Ma W, Pantleon W (2008) Mater Sci Eng A 494:21

    Article  Google Scholar 

  32. Yassar RS, Baird JC, Horstemeyer MF (2009) Mater Sci Eng A 517:286

    Article  Google Scholar 

  33. Glez JCh, Driver JH (2003) Acta Mater 51:2989

    Article  CAS  Google Scholar 

  34. Brewer LN, Field DP, Merriman CC (2009) In: Schwartz AJ et al (eds) Electron backscatter diffraction in materials science. Springer, Berlin, p 251

    Chapter  Google Scholar 

  35. Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Mater Sci Eng A 527:2738

    Article  Google Scholar 

  36. Kamaya M, Wilkinson AJ, Titchmarsh JM (2006) Acta Mater 54:539

    Article  CAS  Google Scholar 

  37. Allain-Bonasso N, Wagner F, Berbenni S, Field DP (2012) Mater Sci Eng A 548:56

    Article  CAS  Google Scholar 

  38. Zhu Q, Sellars CM (2001) Scr Mater 45:41

    Article  CAS  Google Scholar 

  39. Winther G, Huang X, Hansen N (2000) Acta Mater 48:2187

    Article  CAS  Google Scholar 

  40. Pantleon W (2002) J Mater Res 17:2433

    Article  CAS  Google Scholar 

  41. Winther G, Huang X, Godfrey A, Hansen N (2004) Acta Mater 52:4437

    Article  CAS  Google Scholar 

  42. Cizek P, Wynne BP, Rainforth WM (2006) J Phys 26:331

    Google Scholar 

  43. Lee K, Reis ACC, Kim G, Kestens L (2005) J Appl Cryst 38:668

    Article  CAS  Google Scholar 

  44. Mandal S, Bhaduri AK, Subramanya Sarma V (2011) J Mater Sci 46:275. doi:10.1007/s10853-010-4982-6

    Article  CAS  Google Scholar 

  45. Sellars CM (1996) In: Hutchinson B et al (eds) Thermomechanical processing: theory, modelling and practice [TMP2]. ASM, Stockholm, p 35

    Google Scholar 

  46. Lefevre-Schlick F, Brechet Y, Zurob HS, Purdy G, Embury D (2009) Mater Sci Eng A 502:70

    Article  Google Scholar 

  47. Bailey JE, Hirsch PB (1962) Proc R Soc A 267:11

    Article  CAS  Google Scholar 

  48. Somani MC, Karjalainen LP (2005) Ironmak Steelmak 32:294

    Article  CAS  Google Scholar 

  49. Karjalainen LP, Somani MC (2001) In: Gottstein G, Molodov DA (eds) Recrystallization and grain growth. Proceedings of the first joint international conference. Springer, Berlin, p 779

  50. Hu W (2004) Phil Mag Lett 84:7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work reports new developments made by the authors throughout research projects with a financial grant from the Research Fund for Coal and Steel of the European Community (RFCS-7210-PR/291 and RFSR-CT-2007-00014) and the CICYT (Spain) (MAT2001-4281-E) and from the Basque Government (S-PE05CE01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jorge-Badiola.

Appendix: Parametrisation study

Appendix: Parametrisation study

Present formulation of the effective equivalent strain needs two parameters, as it can be concluded from the whole set of equations from Eqs. (17). The first one is the λ parameter while the second one is the proportionality factor A connecting pre-strain and ε0. Aiming to analyse the effect of these two parameters on the equivalent effective strain predictions, two specific points on the εeff–εrev plot have been regarded: the minimum of ε eff Arev , ε Aeff ) and the strain required to achieve the same equivalent strain as just before strain reversal ε Brev (ε eff = εpre), see Fig. 12a. The minimum of the equivalent effective strain during strain reversal must satisfy:

Fig. 12
figure 12

a Typical εeff–εrev plot wherein the characteristic points (εmin and εrev(ε eff = εpre)) are indicated. Variation of b εmin and c ε effmin) with λ for three different A. d Evolution of εrev(ε eff = εpre) for two pre-strains, εpre1 and εpre2, and two different A (0 and 0.2)

$$ \lambda \left( {\varepsilon_{{\rm{pre}}} - \varepsilon_{0} } \right){\rm{e}}^{{ - \lambda \varepsilon_{\hbox{Min} } }} + \left( {1 - \eta \varepsilon_{\hbox{Min} } } \right){\rm{e}}^{{ - \eta \varepsilon_{\hbox{Min} } }} - 1 = 0 $$
(21)

In Fig. 12b, c, the evolution in the position of the minimum ε Arev and its value ε Aeff has been plotted as a function of the λ parameter for three different A. From these plots several conclusions can be extracted. First, ε Arev strongly depends on the λ parameter for low λ values, whereas at larger values, εmin converges progressively irrespective of A. As A increases, the strain needed to reach the minimum shortens for any λ value. Interestingly, the effective equivalent strain evaluated at the minimum ε Aeff decreases monotonically with λ and it increases monotonically with A.

Concerning ε Brev (ε eff = εpre), the variation of this reverse strain with λ for two pre-strains and two A values has been plotted in Fig. 12d. ε Brev (ε eff = εpre) increases monotonically with the pre-strain and it diminishes with A for all λ. It is particularly meaningful that the ε Brev (ε eff = εpre) saturates at lower λ values as the pre-strain is enlarged. The application of different λ–A pairs for describing the experimental data reported in Ref. [6] are shown in Fig. 13. In this particular case, at the low reverse strain region λopt = 50 describes more accurately experimental data compared to λ = λopt/2 = 25 or λ = 2λopt = 100, whereas at large reverse strains, \( A \ne 0 \) yields larger deviations from experimental data than \( A = 0 \).

Fig. 13
figure 13

Application of the different λ–A in εeff for measuring dislocation densities through Eq. (10). Assessment of the applicability of the present formulation

In order to generalise this formulation to other hot working conditions, the variation in the pre-strain and/or the changes in the Zener–Hollomon parameter must be taken into account. In this line, further ongoing work is being undertaken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorge-Badiola, D., Lanzagorta, J.L. & Gutiérrez, I. Discussion on the microstructural transients during strain reversal based on the effective equivalent strain concept. J Mater Sci 48, 1480–1491 (2013). https://doi.org/10.1007/s10853-012-6903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6903-3

Keywords

Navigation