Skip to main content
Log in

Bauschinger Effect in Microalloyed Steels: Part I. Dependence on Dislocation-Particle Interaction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Bauschinger effect (yield stress decreasing at the start of reverse deformation after forward prestrain) is an important factor in strength development for cold metal forming technology. In steels, the magnitude of the Bauschinger effect depends on composition, through the presence of microalloy precipitates, and prior processing, through the size and distribution of microalloy precipitates and presence of retained work hardening. In this article, the microstructures of two (Nb- and Nb-V-microalloyed) steel plates, in terms of (Ti,Nb,V,Cu)-rich particle distributions and dislocation densities, have been quantitatively related to the Bauschinger parameters for the same processing conditions. For the 12- to 50-nm effective particle size range, the Bauschinger stress parameter increases with the particle number density and dislocation density increase. The relative influence of these two microstructure parameters is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. P.S. Bate and D.V. Wilson: Acta Metall., 1986, vol. 34 (6), pp. 1097–1105.

    Article  CAS  Google Scholar 

  2. L.M. Brown: Scripta Metall., 1977, vol. 11, pp. 127–31.

    Article  Google Scholar 

  3. T.C. Harrison, R.T. Weiner, and G.D. Fearnehough: J. Iron Steel Inst., 1972, May, pp. 334–36.

  4. R.C. Ratnapuli and E.C. Rodrigues: Met. Technol., 1982, vol. 9, pp. 440–45.

    Google Scholar 

  5. R.M. Jamieson and J.E. Hood: J. Iron Steel Inst., 1971, Jan., pp. 46–48.

  6. K. Nakajima, W. Mizutani, T. Kikuma, and H. Matumoto: Trans. ISIJ, 1975, vol. 15, pp. 1–10.

    Google Scholar 

  7. J.P. Ormandy, M. Strangwood, and C.L. Davis: Mater. Sci. Technol., 2003, vol. 19, pp. 595–601.

    Article  CAS  Google Scholar 

  8. K. Han, C.J. Van Tyne, and B.S. Levy: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2379–84.

    Article  CAS  Google Scholar 

  9. A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Mater. Technol.: Adv. Perform. Mater., 2007, vol. 22 (3), pp. 166–72.

    CAS  Google Scholar 

  10. A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Ironmaking and Steelmaking, 2009, vol. 36 (3), pp. 186–92.

    Article  CAS  Google Scholar 

  11. D. Williams and C.B. Carter: Transmission Electron Microscopy, II—Diffraction, Plenum Press, New York, NY, 1996, pp. 321–23.

    Google Scholar 

  12. C.L. Davis and M. Strangwood: J. Mater. Sci., 2002, vol. 37, pp. 1083–90.

    Article  CAS  Google Scholar 

  13. M. Strangwood and C.L. Davis: Proc. 2nd Int. Conf. on “Thermo-Mechanical Simulation and Processing of Steels,” Ranchi, India, Allied Publishers PVT. Ltd, New Delhi, India, 2008, pp. 453–63.

  14. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, Cambridge University Press, Cambridge, United Kingdom, 1997, pp. 97–99.

    Google Scholar 

  15. R. Rana, S.B. Singh, and O.N. Mohanty: Mater. Charact., 2008, vol. 59, pp. 969–74.

    Article  CAS  Google Scholar 

  16. A. Ghosh, S. Das, S. Chatterjee, B. Mishra, and P. Ramachandra Rao: Mater. Sci. Eng. A, 2003, vol. 348, pp. 299–308.

    Article  Google Scholar 

  17. S. Shanmugan, R.D.K. Misra, T. Mannering, D. Panda, and S.G. Jansto: Mater. Sci. Eng. A, 2006, vol. 437, pp. 436–45.

    Article  Google Scholar 

  18. I. Madariaga, J.L. Romero, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1003–15.

    CAS  ADS  Google Scholar 

  19. B. Garbarz, J. Marcisz, and J. Wojtas: Mater. Chem. Phys., 2003, vol. 81, pp. 486–89.

    Article  CAS  Google Scholar 

  20. F. Yin, T. Hanamura, O. Umezawa, and K. Nagai: Mater. Sci. Eng. A, 2003, vol. 354, pp. 31–39.

    Article  Google Scholar 

  21. C.F. Robertson, K. Obrtlik, and B. Marini: J. Nucl. Mater., 2007, vol. 366, pp. 58–69.

    Article  CAS  ADS  Google Scholar 

  22. H.G. Hillenbrand, M. Graf, and C. Kalwa: Development and Production of High Strength Pipeline Steels, EUROPIPE GmbH, Ratingen, Germany, 2001, www.europipe.de.

  23. A. Abel and H. Muir: Philos. Mag., 1972, vol. 26, pp. 489–504.

    Article  CAS  ADS  Google Scholar 

  24. D.N. Williams: Metall. Trans. A, 1980, vol. 11A, pp. 1629–31.

    CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Corus plc for the provision of test material. Thanks are due to the Department of Metallurgy and Materials for the provision of research facilities at the University of Birmingham. One of the authors (AGK) is grateful to “The Universities, UK” for awarding a scholarship to carry out his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii G. Kostryzhev.

Additional information

Manuscript submitted August 16, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostryzhev, A.G., Strangwood, M. & Davis, C.L. Bauschinger Effect in Microalloyed Steels: Part I. Dependence on Dislocation-Particle Interaction. Metall Mater Trans A 41, 1399–1408 (2010). https://doi.org/10.1007/s11661-010-0196-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0196-4

Keywords

Navigation