Skip to main content

Mapping and Assessing Plastic Deformation Using EBSD

  • Chapter
  • First Online:
Electron Backscatter Diffraction in Materials Science

This chapter reviews approaches for mapping and assessing plastic deformation using EBSD. This discussion will be focused on the approaches based upon EBSD pattern rotation. Pattern rotation can be mapped or quantified in terms of straight orientation change, local misorientation, average misorientation, or the calculation of geometrically necessary dislocation densities. In polycrystals, the misorientation can be mapped using several different kinds of metrics to visualize plastic deformation around cracks, indentations, and inside deformed grains. We will discuss a number of average misorientation metrics that have been developed to quantify the correlation between plastic deformation and EBSD data. Finally, we will survey the more recent work in the measurement and display of geometrically necessary dislocations and their connection to deformation structures in metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams BL (1997) Orientation imaging microscopy: Emerging and future applications. Ultramicroscopy 67:11–17

    Article  CAS  Google Scholar 

  • Alvi MH, Cheong S, Weiland H, Rollett AD (2004) Recrystallization and texture development in hot rolled 1050 aluminum. Mater Sci Forum 467–470:357–362

    Article  Google Scholar 

  • Angeliu TM, Andresen PL, Hall E, Sutliff JA, Sitzman S, Horn RM (1999) Intergranular stress corrosion cracking of unsensitized stainless steels in BWR environments. In: Bruemmer S, Ford P, Was G (eds) Ninth international symposium on environmental degradation of materials in nuclear power systems-water reactors. TMS—Minerals, metals and materials society, Newport Beach, CA

    Google Scholar 

  • Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47:1597–1611

    Article  CAS  Google Scholar 

  • Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag A 21:399–424

    Article  CAS  ADS  Google Scholar 

  • Barton NR, Dawson PR (2001) A methodology for determining average lattice orientation and its application to the characterization of grain substructure. Metall Mater Trans A 32: 1967–1975

    Article  Google Scholar 

  • Brewer LN, Othon MA, Gao Y, Hazel BT, Buttrill WH, Zhong Z (2006a) Comparison of diffraction methods for measurement of surface damage in superalloys. J Mater Res 21:1775–1781

    Article  CAS  ADS  Google Scholar 

  • Brewer LN, Othon MA, Young LM, Angeliu TM (2006b) Misorientation mapping for visualization of plastic deformation via electron backscattered diffraction. Microsc Microanal 12:85–91

    Article  CAS  PubMed  ADS  Google Scholar 

  • Brough I, Bate PS, Humphreys FJ (2006) Optimising the angular resolution of EBSD. Mater Sci Tech 22:1279–1286

    Article  CAS  Google Scholar 

  • Cheong S, Weiland H (2007) Understanding a microstructure using GOS (grain orientation spread) and its application to recrystallization study of hot deformed al-cu-mg alloys. Mater Sci Forum 558--559:153–158

    Google Scholar 

  • El-Dasher BS, Adams BL, Rollett AD (2003) Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Mater 48:141–145

    Article  CAS  Google Scholar 

  • Field DP, Trivedi PB, Wright SI, Kumar M (2005) Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy 103:33–39

    Article  CAS  PubMed  Google Scholar 

  • Florando JN, LeBlanc MM, Lassila DH (2007) Multiple slip in copper single crystals deformed in compression under uniaxial stress. Scripta Mater 57:537–540

    Article  CAS  Google Scholar 

  • Kamaya M, Wilkinson AJ, Titchmarsh JM (2005) Measurement of plastic strain of polycrystalline material by electron backscatter diffraction. Nucl Eng Des 235:713–725

    Article  CAS  Google Scholar 

  • Kamaya M, Wilkinson AJ, Titchmarsh JM (2006) Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction. Acta Mater 54:539–548

    Article  CAS  Google Scholar 

  • Landon CD, Adams BL, Kacher J (2008) High-resolution methods for characterizing mesoscale dislocation structures. J Eng Mater Tech 130:021004–1-021004–021004–5

    Article  CAS  Google Scholar 

  • Larson BC, El-Azab A, Wenge Y, Tischler JZ, Wenjun L, Ice GE (2007) Experimental characterization of the mesoscale dislocation density tensor. Philos Mag 87:1327–1347

    Article  CAS  ADS  Google Scholar 

  • Lehockey EM, Lin Y, Lepik OE (2000) Mapping residual plastic strain in materials using electron backscatter diffraction. In: Schwartz AJ, Kumar M, Adams BL (eds) Electron backscatter diffraction in materials science. Kluwer Academic, New York

    Google Scholar 

  • Merriman CC (2007) Orientation dependence of dislocation structure evolution of aluminum alloys in 2-D and 3-D, MS Thesis, Washington State University, Pullman, Washington, DC

    Google Scholar 

  • Merriman CC, Field DP, Trivedi P (2008) Orientation dependence of dislocation structure evolution during cold rolling of aluminum. Mat Sci Eng A 494:28--35

    Google Scholar 

  • Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162

    Article  CAS  Google Scholar 

  • Pantleon W (2008) Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scripta Mater 58:994–997

    CAS  Google Scholar 

  • Prior DJ (1999) Problems in determining the misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. J Microsc 195:217–225

    Article  PubMed  Google Scholar 

  • Reddy SM, Timms NE, Pantleon W, Trimby P (2007) Quantitative characterization of plastic deformation of zircon and geological implications. Contrib Mineral Petrol 153: 625–645

    Article  CAS  ADS  Google Scholar 

  • Ren SX, Kenik EA, Alexander KB, Goyal A (1998) Exploring spatial resolution in electron backscattered diffraction experiments via Monte Carlo simulation. Microsc Microanal 4:15–22

    CAS  PubMed  Google Scholar 

  • Sun S, Adams BL, King WE (2000) Observations of lattice curvature near the interface of a deformed aluminium bicrystal. Philos Mag A 80:9–25

    Article  CAS  ADS  Google Scholar 

  • Sutliff JA (1999) An investigation of plastic strain in copper by automated EBSD. In: Bailey GW, Jerome WG, McKernan S, Mansfield JF, Price RL (eds) Microscopy and microanalysis. Springer-Verlag, Berlin

    Google Scholar 

  • Wilkinson AJ (2001) A new method for determining small misorientations from electron backscatter diffraction patterns. Scripta Mater 44:2379–2385

    Article  CAS  Google Scholar 

  • Wilkinson AJ, Dingley DJ (1991) Quantitative deformation studies using electron backscatter patterns. Acta Metall 39:3047–3055

    Article  CAS  Google Scholar 

  • Wilkinson AJ, Meaden G, Dingley DJ (2006) High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 106:307–313

    Article  CAS  PubMed  Google Scholar 

  • Wright SI (1993) A review of automated orientation imaging microscopy (OIM). J Comput Assist Microsc 5:207–221

    Google Scholar 

  • Wright SI (1999) Quantification of recrystallized fraction from orientation imaging scans In: Szpunar JA (ed) ICOTOM 12, Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM 12), Montreal, Canada, Edited by Jerzy A. Szpunar, NRC Research Press, Ottawa, 1999

    Google Scholar 

  • Wright SI, Nowell MM (2006) EBSD image quality mapping. Microsc Microanal 12:72–84

    Article  CAS  PubMed  ADS  Google Scholar 

  • Young GA, Lewis N, Battige CK, Somers RA, Penik MA, Brewer L, Othon M (2002) Quantification of residual plastic strains in Ni-Cr-Mn-Nb GTAW welds via electron backscatter diffraction. ASM proceedings of the international conference: Trends in welding research, p 912

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank S. Wright of EDAX-TSL and C. Parish of Sandia National Laboratories for helpful discussion about this chapter. LNB was supported by Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (DOE) under contract DE-AC0494AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke N. Brewer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brewer, L.N., Field, D.P., Merriman, C.C. (2009). Mapping and Assessing Plastic Deformation Using EBSD. In: Schwartz, A., Kumar, M., Adams, B., Field, D. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88136-2_18

Download citation

Publish with us

Policies and ethics