Skip to main content
Log in

Facile tailoring of titanate nanostructures at low alkaline concentration by a solvothermal route

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured titanates with different morphologies such as nanoflakes, nanotubes, and nanofibers have been selectively synthesized by a simple solvothermal treatment of commercial anatase TiO2 using the mixed water–ethanol cosolvent at low alkaline concentration. The effects of solvothermal temperature, volume ratio of H2O to C2H5OH, amount of NaOH and solvents on the formation of titanate nanostructures have been systematically studied through X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). At low concentration of NaOH solution (the actual concentration of OH in the solution is only 0.58 M), different titanate nanostructures are achieved by simply changing the volume ratio of H2O to C2H5OH at 180 °C and titanate nanotubes can be synthesized between 100 and 180 °C. A probable formation mechanism is proposed based on XRD, SEM and TEM analysis. The influence of cosolvent on the transformation from anatase TiO2 to titanate is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 56:354

    Google Scholar 

  2. Hu JT, Odom TW, Lieber CM (1999) Acc Chem Res 32:435

    Article  CAS  Google Scholar 

  3. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807

    Article  CAS  Google Scholar 

  4. Niu LL, Shao MW, Wang S, Lu L, Gao HZ, Wang J (2008) J Mater Sci 43:1510. doi:10.1007/s10853-007-2374-3

    Article  CAS  Google Scholar 

  5. Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) J Phys Chem B 109:19422

    Article  CAS  Google Scholar 

  6. Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) J Power Sources 146:501

    Article  CAS  Google Scholar 

  7. Sun X, Li Y (2003) Chem Eur J 9:2229

    Article  CAS  Google Scholar 

  8. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  9. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Adv Mater 11:1307

    Article  CAS  Google Scholar 

  10. Morgan DL, Triani G, Blackford MG, Raftery NA, Frost RL (2011) J Mater Sci 46:548. doi:10.1007/s10853-010-5016-0

    Article  CAS  Google Scholar 

  11. Zhao B, Chen F, Jiao YC, Zhang JL (2010) J Mater Chem 20:7990

    Article  CAS  Google Scholar 

  12. Zhao B, Chen F, Gu XN, Zhang JL (2010) Chem Asian J 5:1546

    Article  CAS  Google Scholar 

  13. Zhao B, Chen F, Qu WW, Zhang JL (2009) J Solid State Chem 182:2225

    Article  CAS  Google Scholar 

  14. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) J Mater Chem 14:3370

    Article  CAS  Google Scholar 

  15. Kukovecz Á, Hodos M, Horváth E, Radnöczi G, Kónya Z, Kiricsi I (2005) J Phys Chem B 109:17781

    Article  CAS  Google Scholar 

  16. Morgan DL, Zhu HY, Frost RL, Waclawik ER (2008) Chem Mater 20:3800

    Article  CAS  Google Scholar 

  17. Morgan DL, Liu HW, Frost RL, Waclawik ER (2010) J Phys Chem C 114:101

    Article  CAS  Google Scholar 

  18. Yuan ZY, Su BL (2004) Colloids Surf A 241:173

    Article  CAS  Google Scholar 

  19. Zhu HY, Lan Y, Gao XP, Ringer SP, Zheng ZF, Song DY, Zhao JC (2005) J Am Chem Soc 127:6730

    Article  CAS  Google Scholar 

  20. Wen B, Liu C, Liu Y (2005) Chem Lett 34:396

    Article  CAS  Google Scholar 

  21. Wen B, Liu C, Liu Y (2005) New J Chem 29:969

    Article  CAS  Google Scholar 

  22. Wang Q, Wen Z, Li J (2006) Inorg Chem 45:6944

    Article  CAS  Google Scholar 

  23. Das K, Panda S, Chaudhuri S (2008) J Cryst Growth 310:3792

    Article  CAS  Google Scholar 

  24. Bavykin DV, Kulak AN, Walsh FC (2008) Cryst Growth Des 20:3800

    Google Scholar 

  25. Huang JQ, Cao YG, Wang ML, Huang CG, Deng ZH, Tong H, Liu ZG (2010) J Phys Chem C 114:14748

    CAS  Google Scholar 

  26. Chen Q, Du GH, Zhang S, Peng LM (2002) Acta Crystallogr B58:587

    CAS  Google Scholar 

  27. Kim S, Yun Y, Oh H, Hong SH, Roberts CA, Routray K, Wachs IE (2010) J Phys Chem Lett 1:130

    Article  CAS  Google Scholar 

  28. Liu HW, Yang DJ, Zheng ZF, Ke XB, Waclawik E, Zhu HY, Frost RL (2010) J Raman Spectrosc 41:1331

    Article  CAS  Google Scholar 

  29. Kolen’ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Tendeloo GV, Yoshimura M (2006) J Phys Chem B 110:4030

    Article  Google Scholar 

  30. Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Chem Phys Lett 365:427

    Article  CAS  Google Scholar 

  31. Zhang S, Peng TY, Chen Q, Du GH, Dawson G, Zhou WZ (2003) Phys Rev Lett 91:256103

    Article  CAS  Google Scholar 

  32. Zhang S, Chen Q, Peng LM (2005) Phys Rev B 71:014104

    Article  Google Scholar 

  33. Ma R, Bando Y, Sasaki T (2004) J Phys Chem B 108:2115

    Article  CAS  Google Scholar 

  34. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Appl Phys Lett 82:281

    Article  CAS  Google Scholar 

  35. Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N (2006) Chem Mater 18:547

    Article  CAS  Google Scholar 

  36. Bavykin DV, Cressey BA, Walsh FC (2007) Aust J Chem 60:95

    Article  CAS  Google Scholar 

  37. Li J, Zhou ZX, Zhu LH, Xu K, Tang HQ (2007) J Phys Chem C 111:16768

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by National Basic Research Program of China (973 Program, 2010CB732306), National Nature Science Foundation of China (21007016 and 20977030), the Project of International Cooperation of the Ministry of Science and Technology of China (2011DFA50530), Science and Technology Commission of Shanghai Municipality (10520709900 and 10JC1403900) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Zhang, J. & Tian, B. Facile tailoring of titanate nanostructures at low alkaline concentration by a solvothermal route. J Mater Sci 47, 3855–3866 (2012). https://doi.org/10.1007/s10853-011-6241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6241-x

Keywords

Navigation