Skip to main content
Log in

Formation and optical properties of pure nano-sized anatase titania by low-temperature aqueous sol-gel route

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nanocrystalline anatase titania particles were synthesized by low-temperature aqueous sol-gel transformations from new types of precursors [Ti{OPri}4] (A), [{acac}2Ti{OPri}{ONC9H6}] (1), and [{acac}2Ti{ONC9H6}2] (2) {where, ONC9H6 = 8-hydroxyquinoline}. Formation of all the precursors was confirmed by elemental analysis, molecular weight measurements, FTIR, and NMR (1H and 13C). Titania samples (a), (b), and (c) were formed by aqueous sol-gel transformations of (A), (1), and (2), respectively. The resulting nano-materials were characterized using XRD, TEM, SEM, EDX, SAED, FTIR, and UV-Visible spectroscopic techniques. From the X-ray pattern, the phase purity of the synthesized powders was confirmed as anatase TiO2. Crystallite size of all the oxide samples was measured by XRD and TEM, found to be 26 nm (a), 11 nm (b), and 8 nm (c). Surface morphologies of all the samples were evaluated by SEM. Selected area diffraction (SAED) of (b) and (c) are also corroborated the XRD results. The absorption spectra of oxide samples, (a), (b), and (c) show energy band gap of 2.9 eV, 3 eV, and 3.1 eV, respectively. SAED-EDX analysis confirmed the formation of pure anatase-phase titania nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, R., Elzatahry, A.A., Al-Deyab, S.S., Zhao, D.: Nano Today. 7, 344 (2012)

    Article  Google Scholar 

  2. Bai, J., Zhou, B.: Chem. Rev. 114, 10131 (2014)

    Article  Google Scholar 

  3. Maziarz, W., Kusior, A., Trenczek-Zajac, A.: Beilstein J. Nanotechnol. 7, 1718 (2016)

    Article  Google Scholar 

  4. Pagliaro, M., Palmisano, G., Ciriminna, R., Loddo, V.: Energy Environ. Sci. 2, 838 (2009)

    Article  Google Scholar 

  5. Rehman, F.U., Zhao, C., Jiang, H., Wang, X.: Biomater. Sci. 4, 40 (2016)

    Article  Google Scholar 

  6. Kisch, H., Burgeth, G., Macyk, W.: Adv. Inorg. Chem. 56, 241 (2004)

    Article  Google Scholar 

  7. Hanaor, D.A.H., Sorrell, C.C.: J. Mater. Sci. 46, 855 (2011)

    Article  Google Scholar 

  8. Schubert, U.: Acc. Chem. Res. 40, 730 (2007)

    Article  Google Scholar 

  9. Niederberger, M.: Acc. Chem. Res. 40, 793 (2007)

    Article  Google Scholar 

  10. Rehan, M., Lai, X., Kale, G.M.: CrystEngComm. 13, 3725 (2011)

    Article  Google Scholar 

  11. Gegova, R., Dimitriev, Y., Bachvarova-Nedelcheva, A., Iordanova, R., Loukanov, A., Iliev, T.: J. Chem. Technol. Metall. 48(2), 147 (2013)

    Google Scholar 

  12. Colmenares, J.C., Kuna, E., Lisowski, P.: Top. Curr. Chem. (Z). 59, 374 (2016)

    Google Scholar 

  13. Ding, S., Yin, X., Lü, X., Wang, Y., Huang, F., Wan, D.: ACS Appl. Mater. Interfaces. 4, 306 (2012)

    Article  Google Scholar 

  14. Yao, H., Fan, M., Wang, Y., Luo, G., Fei, W.: J. Mater. Chem. A. 3, 17511 (2015)

    Article  Google Scholar 

  15. Sakka, S. (ed.): Handbook of sol-gel science and technology: characterization and properties of sol-gel materials and products. Springer, Basel (2005)

    Google Scholar 

  16. Kessler, V.G., Spijksma, G.I., Seisenbaeva, G.A., Hakansson, S., Blank, D.H.A., Bouwmeester, H.J.M. J. Sol-gel Sci Technol 40, 163 (2006)

  17. Schubert, U.: J. Mater. Chem. 15, 3701 (2005)

    Article  Google Scholar 

  18. Chaudhary, A., Dhayal, V., Nagar, M., Bohra, R., Mobin, S.M., Mathur, P.: Polyhedron. 30, 821 (2011)

    Article  Google Scholar 

  19. Olevsky, E.A., Bordia, R. (eds.): Advances in sintering science and technology, p. 211. John Wiley & Sons, Noida, India (2010)

  20. Basu, B., Balani, K. (eds.): Advanced structural ceramics. Ceramic Transactions 209. John Wiley & Sons, La Jolla, California (2011)

  21. Dhayal, V., Chaudhary, A., Choudhary, B.L., Nagar, M., Bohra, R., Mobin, S.M., Mathur, P.: Dalton Trans. 41, 9439 (2012)

    Article  Google Scholar 

  22. Livage, J., Henry, M., Sanchez, C.: Prog. Solid State Chem. 18, 259 (1988)

    Article  Google Scholar 

  23. Hench, L.L., West, J.K.: Chem. Rev. 90, 33 (1990)

    Article  Google Scholar 

  24. Bradley, D.C., Mehrotra, R.C., Rothwell, I.P., Singh, A. (eds.): Alkoxo and aryloxo derivatives of metals. Academic Press, London (2001)

    Google Scholar 

  25. Sanwaria, A.R., Sharma, N., Chaudhary, A., Nagar, M.: J. Sol-Gel Sci. Technol. 68, 245 (2013)

    Article  Google Scholar 

  26. Gopal, R., Jain, J., Goyal, A., Gupta, D.K., Nagar, M.:Formation of nano-sized cubic zirconia by aqueous sol–gel route, J. Aust. Ceram. Soc. (2018) https://doi.org/10.1007/s41779-018-0198-z

  27. Vogel, A.I.: A text book of quantitative inorganic analysis, fifth edn. Longman, London (1989)

  28. Bradley, D.C., Hancock, D.C., Wardlaw, W.: Titanium chloride alkoxides, J. Chem. Soc. 2773, (1952). https://doi.org/10.1039/JR9520002773

  29. Puri, D.M., Pande, K.C., Mehrotra, R.C.: J. Less-Common Met. 4, 393 (1962)

    Article  Google Scholar 

  30. Bradley, D.C., Abd-el-Halim, F.M., Mehrotra, R.C., Wardlaw, W.: J. Chem. Soc. 4609-4612, (1952). https://doi.org/10.1039/JR9520004609

  31. Pathak, M., Bohra, R., Mehrotra, R.C.: Transit. Met. Chem. 28, 187 (2003)

    Article  Google Scholar 

  32. Tong, X., Yang, P., Wang, Y., Qin, Y., Guo, X.: Nanoscale. 6, 6692 (2014)

    Article  Google Scholar 

  33. Warren, B.E.: X-ray diffraction (Chapter 13). Dover Publication, New York (1990) (eds)

    Google Scholar 

  34. Tauc, J.: Amorphous & liquid semiconductors. Plenum, New York (1974)

    Book  Google Scholar 

  35. Wilson, W.L., Szajowski, P.J., Brus, L.E.: Science. 262, 1242 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

We are highly thankful to the Material Research Centre, MNIT, Jaipur, for providing facilities of Powder X-ray Diffraction, TEM, SEM, and EDX.

Funding

This study was financially supported by MHRD, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Joshi.

Electronic supplementary material

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, T., Gopal, R., Goyal, A. et al. Formation and optical properties of pure nano-sized anatase titania by low-temperature aqueous sol-gel route. J Aust Ceram Soc 55, 689–695 (2019). https://doi.org/10.1007/s41779-018-0278-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0278-0

Keywords

Navigation