Skip to main content
Log in

Controlled nanostructuring of TiO2 nanoparticles: a sol–gel approach

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The ever increasing interest in titanium oxide (titania) is motivated by its applications in solar cells, biomaterials and photo-catalytic activities. Nanocrystalline titania is preferred in these applications due to chemical stability, mechanical hardness, high refractive index and excellent transmission in the visible region. Titania exists in three different crystallographic phases i.e. anatase, rutile and brookite, amongst which brookite is the most difficult to synthesize. Anatase and rutile crystallize in tetragonal phase whereas brookite has orthorhombic phase. In the present work, titania nanoparticles are synthesized following sol–gel approach. TiCl4 is used as precursor and ammonia as a gelation agent. pH of the sol is varied in the range of 1–11. Nanostructures and hollow core titania nanoparticles with mean diameter of 120 and 70 nm respectively have been synthesized without the use of any hard/soft template. At pH 1 the nanoparticles show amorphous behavior whereas increasing the pH induces crystallinity in nanoparticles. The presence of (020), (202) and (321) confirms the formation of pure brookite phase at a low temperature of 60 °C. The presence of absorption bands in fourier transform infrared spectroscopy in the range of 450–700 cm−1 correspond to infrared active mode of Ti–O–Ti stretching indicating the formation of titania. Detailed Spectroscopic analyses indicate that these nanoparticles are highly transmitting in the visible and infrared region with band gap in the range of 2.96–3.03 eV. Cauchy Model used for fitting the experimental spectroscopic data gives a high value of refractive index with low extinction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim EY, Kim DS, Ahn BT (2009) Bull Korean Chem Soc 30:193–196

    Article  Google Scholar 

  2. Dylla AG, Henkelman G, Stevenson KJ (2013) Acc Chem Res 46(5):1104–1112

    Article  Google Scholar 

  3. Lou XW, Archer LA, Yang Z (2008) Adv Mater 20:3987–4019

    Article  Google Scholar 

  4. Chen M, Ye C, Zhou S, Wu L (2013) Adv Mater 25:5343–5351

    Article  Google Scholar 

  5. An K, Hyeon T (2009) Nano Today 4(4):359–373

    Article  Google Scholar 

  6. Wang ZL (2007) Appl Phys A 88(1):7–15

    Article  Google Scholar 

  7. Guang CJ, Min QL (2012) Sci China Chem 55:2318–2326

    Article  Google Scholar 

  8. Joo JB, Dahl M, Li N, Zaera F, Yin Y (2013) Energy Environ Sci 6:2082–2092

    Article  Google Scholar 

  9. Shiba K, Sato S, Matsushita T, Ogawa M (2013) J Solid State Chem 199:317–325

    Article  Google Scholar 

  10. Arunmetha S, Manivasakan P, Karthik A, Babu NRD, Srither SR, Rajendran V (2013) Adv Powder Technol 24:972–979

    Article  Google Scholar 

  11. Ahn YU, Kim EJ, Kim HT, Hahn SH (2003) Mater Lett 57:4660–4666

    Article  Google Scholar 

  12. Hada R, Amritphale A, Amritphale SS, Dixit S (2010) Open Miner Process J 3:68–72

    Article  Google Scholar 

  13. Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S, Katagiri K, Koumoto K (2008) J Mater Sci 43:5924–5929

    Article  Google Scholar 

  14. Sarma BK, Pal AR, Bailung H, Chutia J (2013) J Alloy Compd 577:261–268

    Article  Google Scholar 

  15. Domaradzki J, Sieradzka K, Kaczmarek D, Prociow E (2009) J Phys: Conf Ser 146:0120151–0120157

    Google Scholar 

  16. Ghamsari MS, Radiman S, Hamid MAA, Mahshid S, Rahmani S (2013) Mater Lett 92:287–290

    Article  Google Scholar 

  17. Shalan AE, Rashad MM, Yu Y, Cantu ML, Mottaleb MSAA (2013) Electrochim Acta 89:469–478

    Article  Google Scholar 

  18. Loryuenyong V, Angamnuaysiri K, Sukcharoenpong J, Suwannasri A (2012) Ceram Int 38:2233–2237

    Article  Google Scholar 

  19. Petrović R, Tanaskovic N, Radovanovic VDZ, Častvan IJ, Stamenkovic I, Janackovic D (2012) Powder Technol 219:239–243

    Article  Google Scholar 

  20. Avci N, Smet PF, Poelman H, Velde NV, Buysser KD, Driessche IV, Poelman D (2009) J Sol–Gel Sci Technol 52:424–431

    Article  Google Scholar 

  21. Chen Z, Zhao G, Li H, Han G, Song B (2009) J Am Ceram Soc 92:1024–1029

    Article  Google Scholar 

  22. Coronado DR, Gattorno GR, Pesqueira MEE, Cab C, Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605

    Article  Google Scholar 

  23. Sangeeth S, Kathyayini SR, Ra PD, Dhivya P, Sridharan M (2013) ICANMEET-2013. New Delhi, India

    Google Scholar 

  24. Park JK, Kim HK (2002) Bull Korean Chem Soc 23:745–748

    Article  Google Scholar 

  25. Blaskov V, Shipochka M, Stambolova I, Vassilev S, Eliyas A, Stefanov P, Loukanov A (2012) J Phys: Conf Ser 398:0120211–0120216

    Google Scholar 

  26. Pouretedal HR, Hosseini M (2010) Acta Chim Slov 57:415–423

    Google Scholar 

  27. Mendes A, Guerra P, Madeira V, Ruano F, Lopes da Silva T, Reis A (2007) World J Microbiol Biotechnol 23:1209–1215

    Article  Google Scholar 

  28. Marotta R, Somma ID, Spasiano D, Andreozzi R, Caprio V (2011) Chem Eng J 172:243–249

    Article  Google Scholar 

  29. Zhang X, Velmurugan T, Mhaisalkar SG, Seeram R (2012) Nanoscale 4:1707–1716

    Article  Google Scholar 

  30. Park KH, Jin EM, Gu HB, Shim SE, Hong CK (2009) Mater Lett 63:2208–2211

    Article  Google Scholar 

  31. Ohko Y, Nakamura Y, Negishi N, Matsuzawa S, Takeuchi K (2010) Environ Chem Lett 8:289–294

    Article  Google Scholar 

  32. Zhu Y, Zhang L, Gao C, Cao L (2000) J Mater Sci 35:4049–4054

    Article  Google Scholar 

  33. Koelsch M, Cassaignon S, Guillemoles JF, Jolivet JP (2002) Thin Solid Films 403–404:312–319

    Article  Google Scholar 

  34. Coronado DY, Gattorno GR, Pesqueira MEE, Cab C, de Coss R, Oskam G (2008) Nanotechnology 19:1456051–1460510

    Google Scholar 

  35. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company, USA

    Google Scholar 

  36. Begum A, Hussain A, Rahman A (2012) Beilstein J Nanotechnol 3:438–443

    Article  Google Scholar 

  37. Brinker CJ, Scherer GW (1990) Sol–Gel science—The physics and chemistry of sol–gel processing. Academic press, New York

    Google Scholar 

  38. Simonsen ME, Sogaard EG (2010) J Sol–Gel Sci Technol 53:485–497

    Article  Google Scholar 

  39. Samsonenko ND, Samsonenko SN, NVaryukhin V, Kolupaeva ZI (2006) J Phys: Condens Matter 18:5303–5312

    Google Scholar 

  40. Fujiwara H (2007) Spectroscopic ellipsometry principles and applications. Wiley, England

    Book  Google Scholar 

  41. Tompkins HG, Irene EA (2005) Handbook of ellipsometry. William Andrew Publishing, USA

    Book  Google Scholar 

  42. Weber MJ (2003) Handbook of optical materials. CRD Press, USA

    Google Scholar 

  43. Bhattacharya P (1994) Semiconductor optoelectronic devices, Prentice Hall

Download references

Acknowledgements

This research work was funded by HEC, Pakistan Project No. P&D/12(156)/45/2008/322. The authors acknowledge the support of Zohra N Kayani, LCWU, Lahore, for providing FTIR data, Ms. Aseya Akbar, CSSP, for optical measurements and Mr. M. Hussain (BANA) for keeping the XRD running.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Naseem, S. Controlled nanostructuring of TiO2 nanoparticles: a sol–gel approach. J Sol-Gel Sci Technol 74, 299–309 (2015). https://doi.org/10.1007/s10971-014-3557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3557-4

Keywords

Navigation