Skip to main content
Log in

Alkaline hydrothermal kinetics in titanate nanostructure formation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the mechanism of precursor dissolution and the influence of kinetics of dissolution on titanate nanotube formation were investigated. This comparative study explored the dissolution kinetics for the case of commercial titania powders, one composed of predominantly anatase (>95%) and the other rutile phase (>93%). These nanoparticle precursors were hydrothermally reacted in 9 mol L−1 NaOH at 160 °C over a range of reaction times of between 2 and 32 h. The high surface area nanotube-form product was confirmed using X-ray diffraction, FT-Raman spectroscopy, and transmission electron microscopy. The concentration of nanotubes produced from the different precursors was established using Rietveld analysis with internal and external corundum standardization to calibrate the absolute concentrations of the samples. Interpretation of the dissolution process of the precursor materials indicated that the dissolution of anatase proceeds via a zero-order kinetic process, whereas rutile dissolution is through a second-order process. The TiO2 nanostructure formation process and mechanism of TiO2 precursor dissolution was confirmed by non-invasive dynamic light scattering measurements. Significant observations are that nanotube formation occurred over a broad range of hydrothermal treatment conditions and was strongly influenced by the order of precursor dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Nanotechnology 19:145605

    Article  Google Scholar 

  2. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515

    Article  CAS  Google Scholar 

  3. Maldotti A, Molinari A, Amadelli R (2002) Chem Rev 102:3811

    Article  CAS  Google Scholar 

  4. Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK (2000) J Catal 192:185

    Article  CAS  Google Scholar 

  5. Triani G, Evans PJ, Attard DJ, Prince KE, Bartlett JR, Tan S, Burford RP (2006) J Mater Chem 16:1355

    Article  CAS  Google Scholar 

  6. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  7. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Adv Mater 11:1307

    Article  CAS  Google Scholar 

  8. Elsanousi A, Elssfah EM, Zhang J, Lin J, Song HS, Tang C (2007) J Phys Chem C 111:14353

    Article  CAS  Google Scholar 

  9. Morgado E Jr, De Abreu MAS, Moure GT, Marinkovic BA, Jardim PM, Araujo AS (2007) Chem Mater 19:665

    Article  CAS  Google Scholar 

  10. Lan Y, Gao X, Zhu H, Zheng Z, Yan T, Wu F, Ringer SP, Song D (2005) Adv Funct Mater 15:1310

    Article  CAS  Google Scholar 

  11. Morgan DL, Liu H-W, Frost RL, Waclawik ER (2010) J Phys Chem C 114:101

    Article  CAS  Google Scholar 

  12. Niu HY, Wang JM, Shi YL, Cai YQ, Wei FS (2009) Microporous Mesoporous Mater 122:28

    Article  CAS  Google Scholar 

  13. Prasad GK, Mahato TH, Singh B, Ganesan K, Srivastava AR, Kaushik MP, Vijayaraghavan R (2008) AIChE J 54:2957

    Article  CAS  Google Scholar 

  14. Nian J-N, Chen S-A, Tsai C-C, Teng H (2006) J Phys Chem B 110:25817

    Article  CAS  Google Scholar 

  15. Xu J-C, Lu M, Guo X-Y, Li H-L (2005) J Mol Catal A 226:123

    Article  CAS  Google Scholar 

  16. Kavan L, Kalbáč M, Zukalová M, Exnar I, Lorenzen V, Nesper R, Grätzel M (2004) Chem Mater 16:477

    Article  CAS  Google Scholar 

  17. Li J, Tang Z, Zhang Z (2006) Chem Phys Lett 418:506

    Article  CAS  Google Scholar 

  18. Wang W, Varghese OK, Paulose M, Grimes CA (2004) J Mater Res 19:417

    Article  Google Scholar 

  19. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) J Mater Chem 14:3370

    Article  CAS  Google Scholar 

  20. Saponjic ZV, Dimitrijevic NM, Tiede DM, Goshe AJ, Zuo X, Chen LX, Barnard AS, Zapol P, Curtiss L, Rajh T (2005) Adv Mater 17:965

    Article  CAS  Google Scholar 

  21. Stumm W, Furrer G (1987) In: Stumm W (ed) Aquatic surface chemistry: chemical processes at the particle-water interface. Wiley, New York

  22. Zhang Y, Walker D, Lesher CE (1989) Contrib Mineral Petrol 102:492

    Article  CAS  Google Scholar 

  23. Lasaga AC, Luttge A (2001) Science 291:2400

    Article  CAS  Google Scholar 

  24. Knauss KG, Dibley MJ, Bourcier WL, Shaw HF (2001) Appl Geochem 16:1115

    Article  CAS  Google Scholar 

  25. Finnegan MP, Zhang HZ, Banfield JF (2008) Chem Mater 20:3443

    Article  CAS  Google Scholar 

  26. Oskam G, Nellore A, Penn RL, Searson PC (2003) J Phys Chem B 107:1734

    Article  CAS  Google Scholar 

  27. Chen Y-F, Lee C-Y, Yeng M-Y, Chiu H-T (2003) Mater Chem Phys 81:39

    Article  CAS  Google Scholar 

  28. Seo D-S, Lee J-K, Kim H (2001) J Cryst Growth 229:428

    Article  CAS  Google Scholar 

  29. Meng X-D, Wang D-Z, Liu J-H, Zhang S-Y (2004) Mater Res Bull 39:2163

    Article  CAS  Google Scholar 

  30. Yuan Z-Y, Su B-L (2004) Colloids Surf A 241:173

    Article  CAS  Google Scholar 

  31. Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K, Aritani H (2004) J Mater Sci 39:4239. doi:10.1023/B:JMSC.0000033405.73881.7c

    Article  CAS  Google Scholar 

  32. Kolen’ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Van Tendeloo G, Yoshimura M (2006) J Phys Chem B 110:4030

    Article  Google Scholar 

  33. Schmidt J, Vogelsberger W (2006) J Phys Chem B 110:3955

    Article  CAS  Google Scholar 

  34. Hill RJ, Howard CJ (1987) J Appl Crystallogr 20:467

    Article  CAS  Google Scholar 

  35. O’Connor BH, Raven MD (1988) Powder Diffr 3:2

    Google Scholar 

  36. Taylor JC (1991) Powder Diffr 6:2

    CAS  Google Scholar 

  37. Deng Q, Wei M, Ding X, Jiang L, Ye B, Wei K (2008) Chem Commun 3657

  38. Swamy V, Gale JD, Dubrovinsky LS (2001) J Phys Chem Solids 62:887

    Article  CAS  Google Scholar 

  39. Burdett JK, Hughbanks T, Miller GJ, Richardson JW Jr, Smith JV (1987) J Am Chem Soc 109:3639

    Article  CAS  Google Scholar 

  40. CRC handbook of chemistry and physics (2009) vol 89th. CRC Press Inc., New York

  41. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63:155409/1

    Article  CAS  Google Scholar 

  42. Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N (2006) Chem Mater 18:547

    Article  CAS  Google Scholar 

  43. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807

    Article  CAS  Google Scholar 

  44. Bavykin DV, Cressey BA, Light ME, Walsh FC (2008) Nanotechnology 19:275604/1

    Article  CAS  Google Scholar 

  45. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: Surface area, pore size and density. Kluwer Academic, Dordrecht

    Google Scholar 

  46. Marabi A, Mayor G, Burbidge A, Wallach R, Saguy IS (2008) Chem Eng J 139:118

    Article  CAS  Google Scholar 

  47. Schindler PW, Stumm W (1987) In: Stumm W (ed) Aquatic surface chemistry: chemical processes at the particle-water interface. Wiley, New York

  48. Chida T, Niibori Y, Tochiyama O, Mimura H, Tanaka K (2004) Mater Res Soc Symp Proc 824:467

    CAS  Google Scholar 

  49. Tikhov SF, Sadykov VA, Ratko AI, Kouznetsova TF, Romanenkov VE, Eremenko SI (2007) React Kinet Catal Lett 92:83

    Article  CAS  Google Scholar 

  50. Mendive CB, Bredow T, Feldhoff A, Blesa MA, Bahnemann D (2008) Phys Chem Chem Phys 10:1960

    Article  CAS  Google Scholar 

  51. Zhang HZ, Banfield JF (1998) J Mater Chem 8:2073

    Article  CAS  Google Scholar 

  52. Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z (2003) Dalton Trans 3898

  53. Bavykin DV, Walsh FC (2007) J Phys Chem C 111:14644

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Australian Institute of Nuclear Science and Engineering through the provisioning of an award (AINGRA07051P) for access to research equipment at the Australian Nuclear Science and Technology Organisation. The financial and infrastructure support of the Queensland University of Technology, Discipline of Chemistry, is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. Drs L. Rintoul and D. Cassidy are thanked for their assistance and expertise with the instrumentation used in this study. Dr R. A. Caruso is thanked for her understanding and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Waclawik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D.L., Triani, G., Blackford, M.G. et al. Alkaline hydrothermal kinetics in titanate nanostructure formation. J Mater Sci 46, 548–557 (2011). https://doi.org/10.1007/s10853-010-5016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5016-0

Keywords

Navigation