Skip to main content

Advertisement

Log in

Coupled thermo-mechanical model based comparison of friction stir welding processes of AA2024-T3 in different thicknesses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fully coupled thermo-mechanical finite element model was used to study the friction stir welding process of AA2024-T3 in different thicknesses. The computational results show that the material flows on the retreating and the front sides are higher. So, the slipping rates on the retreating and the front sides are lower than the ones on the trailing and advancing sides. This is the reason that the heat fluxes on the trailing and the advancing sides are higher, which leads to the fact that the temperatures are higher in this region for both thin and thick plates. The energy entering the welding plate accounts for over 50% in the total energy and about 85% in the energy comes from the frictional heat in FSW of AA2024-T3 and the balance from the mechanical effects. The stirring effect of the welding tool becomes weaker in FSW of thick plates. With consideration of the material deformations and the energy conversions, FSW of thin plates shows advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhadeshia HKDH, DebRoy T (2009) Sci Technol Weld Join 14:193

    Article  CAS  Google Scholar 

  2. Cavaliere P, Squillace A, Panella F (2008) J Mater Process Technol 200:364

    Article  CAS  Google Scholar 

  3. Lorrain O, Serri J, Favier V, Zahrouni H, Hadrouz ME (2009) J Mech Mater Struct 4:351

    Article  Google Scholar 

  4. Ma ZY (2008) Metall Mater Trans A 39:642

    Article  Google Scholar 

  5. Mahmoud ERI, Takahashi M, Shibayanagi T, Ikeuchi K (2009) Sci Technol Weld Join 14:413

    Article  CAS  Google Scholar 

  6. Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1

    Article  Google Scholar 

  7. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Prog Mater Sci 53:980

    Article  CAS  Google Scholar 

  8. Zhou L, Liu HJ (2010) Int J Hydro Energy 35:8733

    Article  CAS  Google Scholar 

  9. Buffa G, Fratini L, Shivpuri R (2007) J Mater Process Technol 191:356

    Article  CAS  Google Scholar 

  10. Genevois C, Fabr`egue D, Deschamps A, Poole WJ (2006) Mater Sci Eng A 441:39

    Article  Google Scholar 

  11. Simar A, Bre′chet Y, de Meester B, Denquin A, Pardoen T (2007) Acta Mater 55:6133

    Article  CAS  Google Scholar 

  12. Zhang Z, Zhang HW (2009) Mater Des 30:900

    Article  CAS  Google Scholar 

  13. Zhang Z, Zhang HW (2009) J Mater Process Technol 209:241

    Article  CAS  Google Scholar 

  14. Zhang Z, Zhang HW (2007) Sci Technol Weld Join 12:226

    Article  Google Scholar 

  15. Zhang Z, Liu YL, Chen JT (2009) Int J Adv Manuf Technol 45:889

    Article  Google Scholar 

  16. Hamilton C, Dymek S, Sommers A (2008) Int J Mach Tools Manuf 48:1120

    Article  Google Scholar 

  17. Khandkar MZH, Khan JA, Reynolds AP (2003) Sci Technol Weld Join 8:165

    Article  Google Scholar 

  18. Schmidt H, Hattel J (2005) Model Simul Mater Sci Eng 13:77

    Article  Google Scholar 

  19. Qin X, Michaleris P (2009) Sci Technol Weld Join 14:640

    Article  CAS  Google Scholar 

  20. Arora A, Nandan R, Reynolds AP, DebRoy T (2009) Scr Mater 60:13

    Article  CAS  Google Scholar 

  21. Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Int J Mach Tools Manuf 50:143

    Article  Google Scholar 

  22. Zhang Z (2008) J Mater Sci 43:5867. doi:https://doi.org/10.1007/s10853-008-2865-x

    Article  CAS  Google Scholar 

  23. Zhang Z, Chen JT (2008) J Mater Sci 43:222. doi:https://doi.org/10.1007/s10853-007-2129-1

    Article  CAS  Google Scholar 

  24. Zhang HW, Zhang Z, Chen JT (2007) J Mater Process Technol 183:62

    Article  CAS  Google Scholar 

  25. Colligan K (1999) Weld J 78:229

    Google Scholar 

  26. Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2003) Mater Charact 49:95

    Article  Google Scholar 

  27. Li Y, Murr LE, McClure JC (1999) Scr Mater 40:1041

    Article  CAS  Google Scholar 

  28. Zhang HW, Zhang Z, Chen JT (2005) Sci Eng A 403:340

    Article  Google Scholar 

  29. Zhang Z, Zhang HW (2008) Int J Adv Manuf Technol 37:279

    Article  Google Scholar 

  30. Cavaliere P, Campanile G, Panella F, Squillace A (2006) J Mater Process Technol 180:263

    Article  CAS  Google Scholar 

  31. Dixit V, Mishra RS, Lederich RJ, Talwar R (2009) Sci Technol Weld Join 14:346

    Article  CAS  Google Scholar 

  32. Peel M, Steuwer A, Preuss M, Withers PJ (2003) Acta Mater 51:4791

    Article  CAS  Google Scholar 

  33. Lombard H, Hattingh DG, Steuwer A, James MN (2009) Mater Sci Eng A 501:119

    Article  Google Scholar 

  34. Lombard H, Hattingh DG, Steuwer A, James MN (2008) Eng Fract Mech 75:341

    Article  Google Scholar 

  35. Yan JH, Sutton MA, Reynolds AP (2005) Sci Technol Weld Join 10:725

    Article  CAS  Google Scholar 

  36. Nandan R, Roy GG, Lienert TJ, DebRoy T (2007) Acta Mater 55:883

    Article  CAS  Google Scholar 

  37. Chen CM, Kovacevic R (2003) Int J Mach Tools Manuf 43:1319

    Article  Google Scholar 

  38. Zhang Z, Zhang HW (2007) Sci Technol Weld Join 12:436

    Article  Google Scholar 

  39. Belystchko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York, p 393

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 10802017) and the National Key Basic Research Special Foundation of China (2010CB832704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Chen, J.T., Zhang, Z.W. et al. Coupled thermo-mechanical model based comparison of friction stir welding processes of AA2024-T3 in different thicknesses. J Mater Sci 46, 5815–5821 (2011). https://doi.org/10.1007/s10853-011-5537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5537-1

Keywords

Navigation