Skip to main content
Log in

Comparison of two contact models in the simulation of friction stir welding process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two contact models are used to simulate the thermo-mechanical interaction process in friction stir welding. Comparison shows that the classical Coulomb friction model can be accurate enough for the simulation of friction stir welding in lower angular velocity. But in higher angular velocity, the classical Coulomb friction model fails to work due to the increase of the dynamic effect of the welding tool. Because the shear failure of material is considered in modified Coulomb friction model, the increase of the frictional stress on the tool–plate interface is limited by the shear failure. So, this model can keep valid even when the angular velocity of the welding tool is increased to a high level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) Friction stir welding, International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8

  2. Squillace A, De Fenzo A, Giorleo G, Bellucci F (2004) J Mater Process Technol 152:97. doi:https://doi.org/10.1016/j.jmatprotec.2004.03.022

    Article  CAS  Google Scholar 

  3. Reynolds AP, Tang W, Khandkar Z, Khan JA, Lindner K (2005) Sci Technol Weld Join 10(2):190. doi:https://doi.org/10.1179/174329305X37024

    Article  CAS  Google Scholar 

  4. Colegrove PA, Shercliff HR (2003) Sci Technol Weld Join 8(5):360. doi:https://doi.org/10.1179/136217103225005534

    Article  CAS  Google Scholar 

  5. Chen CM, Kovacevic R (2004) Int J Mach Tools Manuf 44:1205. doi:https://doi.org/10.1016/j.ijmachtools.2004.03.011

    Article  Google Scholar 

  6. David SA, DebRoy T (1992) Science 257:497. doi:https://doi.org/10.1126/science.257.5069.497

    Article  CAS  Google Scholar 

  7. Khandkar MZH, Khan JA, Reynolds AP (2003) Sci Technol Weld Join 8(3):165. doi:https://doi.org/10.1179/136217103225010943

    Article  Google Scholar 

  8. Mandal S, Williamson K (2006) J Mater Process Technol 174:190. doi:https://doi.org/10.1016/j.jmatprotec.2005.12.012

    Article  CAS  Google Scholar 

  9. Bastier A, Maintournam MH, Dang Van K, Roger F (2006) Sci Technol Weld Join 11(3):278. doi:https://doi.org/10.1179/174329306X102093

    Article  Google Scholar 

  10. Song M, Kovacevic R (2003) Int J Mach Tools Manuf 43:605. doi:https://doi.org/10.1016/S0890-6955(03)00022-1

    Article  Google Scholar 

  11. Schmidt H, Hattel J (2005) Model Simul Mater Sci Eng 13:77. doi:https://doi.org/10.1088/0965-0393/13/1/006

    Article  Google Scholar 

  12. Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2003) Mater Charact 49:95. doi:https://doi.org/10.1016/S1044-5803(02)00362-5

    Article  Google Scholar 

  13. Colligan K (1999) Weld Res, Suppl Weld J:229

  14. Li Y, Murr LE, McClure JC (1999) Mater Sci Eng A 271:213. doi:https://doi.org/10.1016/S0921-5093(99)00204-X

    Article  Google Scholar 

  15. Muthukumaran S, Mukherjee SK (2006) Sci Technol Weld Join 11(3):337. doi:https://doi.org/10.1179/174329306X107665

    Article  CAS  Google Scholar 

  16. Reynolds AP (2000) Sci Technol Weld Join 5(2):120. doi:https://doi.org/10.1179/136217100101538119

    Article  Google Scholar 

  17. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Mater Sci Eng A 419:389. doi:https://doi.org/10.1016/j.msea.2005.09.040

    Article  Google Scholar 

  18. Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Acta Mater 55:883. doi:https://doi.org/10.1016/j.actamat.2006.09.009

    Article  CAS  Google Scholar 

  19. Zhang HW, Zhang Z, Chen JT (2005) Mater Sci Eng A (403):340. doi:https://doi.org/10.1016/j.msea.2005.05.052

    Article  Google Scholar 

  20. Zhang HW, Zhang Z, Chen JT (2007) J Mater Process Technol 183:62. doi:https://doi.org/10.1016/j.jmatprotec.2006.09.027

    Article  CAS  Google Scholar 

  21. Zhang Z, Zhang HW (2008) Int J Adv Manuf Technol 37:279. doi:https://doi.org/10.1007/s00170-007-0971-6

    Article  Google Scholar 

  22. Zhang Z, Zhang HW (2007) Sci Technol Weld Join 12(3):226. doi:https://doi.org/10.1179/174329307X177919

    Article  Google Scholar 

  23. Nandan R, Roy GG, Lienert TJ, DebRoy T (2006) Sci Technol Weld Join 11(5):526. dohttps://doi.org/10.1179/174329306X107692i:

    Article  Google Scholar 

  24. Feng AH, Ma ZY (2007) Scr Mater 56:397. doi:https://doi.org/10.1016/j.scriptamat.2006.10.035

    Article  CAS  Google Scholar 

  25. Ma ZY, Sharma SR, Mishra RS (2006) Mater Sci Eng A 433:269. doi:https://doi.org/10.1016/j.msea.2006.06.099

    Article  Google Scholar 

  26. Zhang HW, Zhong WX, Wu CH, Liao AH (2006) Int J Mech Sci 48:176. doi:https://doi.org/10.1016/j.ijmecsci.2005.08.003

    Article  Google Scholar 

  27. Zhang HW, Wang H, Wriggers P, Schrefler BA (2005) Comput Mech 36(6):444. doi:https://doi.org/10.1007/s00466-005-0680-7

    Article  Google Scholar 

  28. Zhang Z, Zhang HW (2007) Int J Adv Manuf Technol 35:86. doi:https://doi.org/10.1007/s00170-006-0707-z

    Article  Google Scholar 

  29. Liu HJ, Fujii H, Maeda M, Nogi K (2003) J Mater Sci Lett 22:441. doi:https://doi.org/10.1023/A:1022959627794

    Article  CAS  Google Scholar 

  30. Lin SB, Zhao YH, Wu L (2006) Mater Sci Technol 22(8):995. doi:https://doi.org/10.1179/174328406X102408

    Article  CAS  Google Scholar 

  31. Murr LE, Liu G, McClure JC (1997) J Mater Sci Lett 16:1801. doi:https://doi.org/10.1023/A:1018556332357

    Article  CAS  Google Scholar 

  32. Fratini L, Buffa G (2005) Int J Mach Tools Manuf 45:1188. doi:https://doi.org/10.1016/j.ijmachtools.2004.12.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (Nos. 10302007, 10421202, and 10225212), the National High Technology Research and Development Program of China (2006AA09Z326) and Science Research Foundation of Dalian University of Technology. The author would like to thank Prof. Z.Y. Ma at the Institute of Metal Research in Chinese Academy of Sciences for his valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z. Comparison of two contact models in the simulation of friction stir welding process. J Mater Sci 43, 5867–5877 (2008). https://doi.org/10.1007/s10853-008-2865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2865-x

Keywords

Navigation