Skip to main content
Log in

Effect of shoulder size on the temperature rise and the material deformation in friction stir welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A fully coupled thermo-mechanical model is adopted to study the effect of shoulder size on the temperature distributions and the material deformations in friction stir welding. Numerical results indicate that the maximum temperature can be increased with the increase of the shoulder diameter. The stirring zone can be enlarged by the increase of the shoulder size. With consideration of the recrystallization formula, it is found that the temperature variation is the main factor for controlling the grain growth near the welding line. But, when the strain and the strain rate become smaller near the border of the stirring zone, the recrystallization process is dominated by the material deformations instead of the temperature rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) GB Patent Applications No. 9125978.8

  2. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng Rep 50:1–78. doi:10.1016/j.mser.2005.07.001

    Article  MATH  Google Scholar 

  3. Liu HJ, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy. J Mater Sci Lett 22:1061–1063. doi:10.1023/A:1024970421082

    Article  Google Scholar 

  4. Chen YC, Feng JC, Liu HJ (2007) Stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment. Mater Charact 58:174–178. doi:10.1016/j.matchar.2006.04.015

    Article  Google Scholar 

  5. Xie GM, Ma ZY, Geng L (2008) Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy. Mater Sci Eng A 486:49–55. doi:10.1016/j.msea.2007.08.043

    Article  Google Scholar 

  6. Lee WB, Yeon YM, Jung SB (2003) Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy. Mater Sci Technol 19:1513–1518. doi:10.1179/026708303225008068

    Article  Google Scholar 

  7. Booth DPP, Starink MJ, Sinclair I (2007) Analysis of local microstructure and hardness of 13 mm gauge 2024–T351 AA friction stir welds. Mater Sci Technol 23:276–284. doi:10.1179/174328407X157290

    Article  Google Scholar 

  8. Zhang Z, Chen JT (2008) The simulation of material behaviors in friction stir welding process by using rate-dependent constitutive model. J Mater Sci 43:222–232. doi:10.1007/s10853-007-2129-1

    Article  Google Scholar 

  9. Zhang HW, Zhang Z, Chen JT (2005) The finite element simulation of the friction stir welding process. Mater Sci Eng A 403:340–348. doi:10.1016/j.msea.2005.05.052

    Article  Google Scholar 

  10. Zhang HW, Zhang Z, Chen JT (2007) 3D modelling of material flow in friction stir welding under different process parameters. J Mater Process Technol 183:62–70. doi:10.1016/j.jmatprotec.2006.09.027

    Article  Google Scholar 

  11. Zhang Z, Zhang HW (2007) The simulation of residual stresses in friction stir welds. J Mech Mater Struct 2:951–964

    Article  Google Scholar 

  12. Li T, Shi QY, Li HK (2007) Residual stresses simulation for friction stir welded joint. Sci Technol Weld Join 12:634–640. doi:10.1179/174329307X236832

    Article  MathSciNet  Google Scholar 

  13. Zhang Z, Zhang HW (2007) Material behaviors and mechanical features in friction stir welding process. Int J Adv Manuf Technol 35:86–100. doi:10.1007/s00170-006-0707-z

    Article  Google Scholar 

  14. Zhang Z, Zhang HW (2008) A fully coupled thermo-mechanical model of friction stir welding. Int J Adv Manuf Technol 37:279–293. doi:10.1007/s00170-007-0971-6

    Article  Google Scholar 

  15. Zhang Z, Zhang HW (2007) Numerical studies on the effect of axial pressure in friction stir welding. Sci Technol Weld Join 12:226–248. doi:10.1179/174329307X177919

    Article  Google Scholar 

  16. Zhang Z, Zhang HW (2007) Numerical studies of pre-heating time effect on temperature and material behaviors in friction stir welding process. Sci Technol Weld Join 12:436–448. doi:10.1179/174329307X214386

    Article  Google Scholar 

  17. Schmidt H, Hattel J (2005) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 13:77–93. doi:10.1088/0965-0393/13/1/006

    Article  Google Scholar 

  18. Colegrove P, Shercliff HR (2006) 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169:320–327. doi:10.1016/j.jmatprotec.2005.03.015

    Article  Google Scholar 

  19. Arora A, Nandan R, Reynolds AP, DebRoy T (2009) Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr Mater 60:13–16. doi:10.1016/j.scriptamat.2008.08.015

    Article  Google Scholar 

  20. Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43:605–615. doi:10.1016/S0890-6955(03)00022-1

    Article  Google Scholar 

  21. Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Des 29:362–373. doi:10.1016/j.matdes.2007.01.030

    Google Scholar 

  22. Elangovan K, Balasubramanian V, Valliappan M (2008) Influences of tool pin profile and axial force on formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol 38:285–295. doi:10.1007/s00170-007-1100-2

    Article  Google Scholar 

  23. Zhang H, Lin SB, Wu L, Feng JC, Ma SL (2006) Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy. Mater Des 27:805–809. doi:10.1016/j.matdes.2005.01.016

    Google Scholar 

  24. Zhang Z, Zhang HW (2009) Numerical studies on the effect of transverse speed in friction stir welding. Mater Des 30:900–907. doi:10.1016/j.matdes.2008.05.029

    Google Scholar 

  25. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  26. Zhang HW, Wang H, Wriggers P, Schrefler BA (2005) A finite element model for contact analysis of multiple Cosserat bodies. Comput Mech 36:444–458. doi:10.1007/s00466-005-0680-7

    Article  MATH  Google Scholar 

  27. Zhang HW, Zhong WX, Wu CH, Liao AH (2006) Some advances and applications in quadratic programming method for numerical modeling of elastoplastic contact problems. Int J Mech Sci 48:176–189. doi:10.1016/j.ijmecsci.2005.08.003

    Article  MATH  Google Scholar 

  28. Zhang HW, Liao AH, Wu CH (2007) Numerical simulation of contact problems in vane machinery by a parametric quadratic programming method. Arch Appl Mech 77:421–437. doi:10.1007/s00419-006-0099-4

    Article  MATH  Google Scholar 

  29. Zhang Z, Zhang HW (2009) Numerical studies on controlling of process parameters in friction stir welding. J Mater Process Technol 209:241–270. doi:10.1016/j.jmatprotec.2008.01.044

    Article  Google Scholar 

  30. Soundararajan V, Zekovic S, Kovacevic R (2005) Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. Int J Mach Tools Manuf 45:1577–1587. doi:10.1016/j.ijmachtools.2005.02.008

    Google Scholar 

  31. Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2003) Flow patterns during friction stir welding. Mater Charact 49:95–101. doi:10.1016/S1044-5803(02)00362-5

    Article  Google Scholar 

  32. Colligan K (1999) Material flow behavior during friction stir welding of aluminium. Weld J 78:229–237

    Google Scholar 

  33. Muthukumaran S, Mukherjee SK (2006) Two modes of metal flow phenomenon in friction stir welding process. Sci Technol Weld Join 11:337–340. doi:10.1179/174329306X107665

    Article  Google Scholar 

  34. Muthukumaran S, Mukherjee SK (2008) Multi layered metal flow and formation of onion rings in friction stir weld. Int J Adv Manuf Technol 38:68–73. doi:10.1007/s00170-007-1071-3

    Article  Google Scholar 

  35. Reynolds AP (2000) Visualisation of material flow in autogenous friction stir welds. Sci Technol Weld Join 5:120–124. doi:10.1179/136217100101538119

    Article  Google Scholar 

  36. McQueen HJ, Cabibbo M, Evangelista E (2007) Piercing/extrusion and FSW nugget microstructure formation in Al alloys. Mater Sci Technol 23:803–809. doi:10.1179/174328407X161178

    Article  Google Scholar 

  37. Fratini L, Buffa G (2007) Continuous dynamic recrystallization phenomena modelling in friction stir welding of aluminium alloys: a neural-network-based approach. Proc IMechE-Part B: J Eng Manuf 221:857–864

    Article  Google Scholar 

  38. Buffa G, Fratini L, Shivpuri R (2007) CDRX modelling in friction stir welding of AA7075–T6 aluminum alloy: analytical approaches. J Mater Process Technol 191:356–359. doi:10.1016/j.jmatprotec.2007.03.033

    Article  Google Scholar 

  39. Murr LE, Liu G, McClure JC (1997) Dynamic recrystallization in friction-stir welding of aluminium alloy 1100. J Mater Sci Lett 16:1801–1803. doi:10.1023/A:1018556332357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Liu, Y.L. & Chen, J.T. Effect of shoulder size on the temperature rise and the material deformation in friction stir welding. Int J Adv Manuf Technol 45, 889–895 (2009). https://doi.org/10.1007/s00170-009-2034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2034-7

Keywords

Navigation