Skip to main content
Log in

Inverse temperature dependence of activation volume in ultrafine-grained copper processed by accumulative roll-bonding

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tensile tests and strain-rate jump tests were carried out at several temperatures below room temperature on Cu processed by accumulative roll-bonding (ARB). The temperature dependences of the flow stress and the activation volume were determined. In contrast to conventional coarse-grained materials where the activation volume increases with increasing temperature, the ARB processed copper by 8 cycles with ultrafine-grains showed inverse temperature dependence of activation volume, i.e., decreased activation volume with increasing temperature. This inverse temperature dependence of the activation volume is discussed in terms of thermally activated dislocation bow-out from grain-boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427–556

    Article  CAS  Google Scholar 

  2. Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A (2008) CIRP Ann-Manuf Technol 57:716–735

    Article  Google Scholar 

  3. Valiev RZ (2007) J Mater Sci 42:1483–1490. doi:10.1007/s10853-006-1281-3

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517–1528. doi:10.1007/s10853-006-0628-0

    Article  CAS  Google Scholar 

  5. Langdon TG (2007) J Mater Sci 42:3388–3397. doi:10.1007/s10853-006-1475-8

    Article  CAS  Google Scholar 

  6. Mishra A, Richard V, Gregori F, Asaro RJ, Meyers MA (2005) Mater Sci Eng A 410–411:290–298

    Google Scholar 

  7. Takata N, Yamada K, Ikeda K, Yoshida F, Nakashima H, Tsuji N (2007) Mater Trans 48:2043–2048

    Article  CAS  Google Scholar 

  8. Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A 497:168–173

    Article  Google Scholar 

  9. Ito Y, Horita Z (2009) Mater Sci Eng A 503:32–36

    Article  Google Scholar 

  10. Hanazaki K, Shigeiri N, Tsuji N (2010) Mater Sci Eng A 527:5699–5707

    Article  Google Scholar 

  11. Kunimine T, Takata N, Tsuji N, Fujii T, Kato M, Onaka S (2009) Mater Trans 50:64–69

    Article  CAS  Google Scholar 

  12. Huang X, Hansen N, Tsuji N (2006) Science 312:249–251

    Article  CAS  Google Scholar 

  13. Wang YM, Hamza AV, Ma E (2006) Acta Mater 54:2715–2726

    Article  CAS  Google Scholar 

  14. Wang YM, Cheng S, Wei QM, Ma E, Nieh TG, Hamza A (2004) Scr Mater 51:1023–1028

    Article  CAS  Google Scholar 

  15. Conrad H (1965) In: Zackay VF (ed) High-Strength Materials. John Wiley & Sons, Inc, New York

    Google Scholar 

  16. Bochniak W (1995) Acta Metall Mater 43:225–233

    CAS  Google Scholar 

  17. Conrad H, Yang D (2002) J Electron Mater 31:304–312

    Article  CAS  Google Scholar 

  18. Conrad H (2003) Mater Sci Eng A 341:216–228

    Article  Google Scholar 

  19. Cheng S, Spencer JA, Milligan WW (2003) Acta Mater 51:4505–4518

    Article  CAS  Google Scholar 

  20. Kato M, Fujii T, Onaka S (2008) Mater Trans 49:1278–1283

    Article  CAS  Google Scholar 

  21. Kato M (2009) Mater Sci Eng A 516:276–282

    Article  Google Scholar 

  22. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Scr Mater 40:795–800

    Article  CAS  Google Scholar 

  23. Tsuji N (2006) In: Altan BS, Miskioglu I, Purcek G, Mulyukov RR, Artan R (eds) Severe plastic deformation: towards bulk production of nanostructured materials. NOVA Science Publishers, New York

    Google Scholar 

  24. Kunimine T, Fujii T, Onaka S, Tsuji N, Kato M, in press

  25. Shen YF, Lu L, Dao M, Suresh S (2006) Scr Mater 55:319–322

    Article  CAS  Google Scholar 

  26. Dalla Torre FH, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135–1146

    Article  CAS  Google Scholar 

  27. Estrin Y, Kim HS, Nabarro FRN (2007) Acta Mater 55:6401–6407

    Article  CAS  Google Scholar 

  28. Frost HJ, Ashby MF (1982) Deformation-Mechanism Maps. Pergamon, Oxford

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Bulk Nanostructured Metals” (22102006) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. T. Kunimine is grateful for the support of the Global COE Program (Education and Research Center for Material Innovation) in Tokyo Institute of Technology, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Kunimine.

Appendix. Derivation of Eq. 3 from Eq. 2

Appendix. Derivation of Eq. 3 from Eq. 2

Eq. 2 can be rewritten as

$$ V^{\ast} /\left( {r^{2} b} \right) = \left[ {\sin^{ - 1} \left( {\eta + \delta \eta } \right) - \sin^{ - 1} \left( \eta \right)} \right] - \left[ {\left( {\eta + \delta \eta } \right)\sqrt {1 - \left( {\eta + \delta \eta } \right)^{2} } - \eta \sqrt {1 - \eta^{2} } } \right], $$
(11)

where \( \eta = L_{\text{GB}} /(2r) > 0 \) and \( \delta \eta = w^{\ast} /(2r) > 0 \). The authors also have \( \eta = L_{\text{GB}} /(2r) = \sin \theta \) where θ is the critical bow-out angle. Since the activation distance w* of the pinning point is naturally much shorter than the average distance \( L_{\text{GB}} \) between pinning points, the authors have \( \left| {\delta \eta /\eta } \right| \ll 1 \).

The function \( \sin^{ - 1} \left( \eta \right) \) in the right side of Eq. 11 is given by the series written as

$$ \sin^{ - 1} \left( \eta \right) = \sum\limits_{n = 0}^{\infty } {{\frac{{\left( {2n - 1} \right)!!\eta^{2n + 1} }}{{\left( {2n} \right)!!\left( {2n + 1} \right)}}}} , $$
(12)

where \( \left( {2n - 1} \right)!! = \left( {2n - 1} \right)\left( {2n - 3} \right) \ldots \, 3 \cdot 1 \) and \( \left( {2n} \right)!! = \left( {2n} \right)\left( {2n - 2} \right) \ldots \, 4 \cdot 2. \) When \( \left| {\delta \eta /\eta } \right| \ll 1 \), we have

$$ \sin^{ - 1} \left( {\eta + \delta \eta } \right) = \sum\limits_{n = 0}^{\infty } {{\frac{{\left( {2n - 1} \right)!!\left( {\eta + \delta \eta } \right)^{2n + 1} }}{{\left( {2n} \right)!!\left( {2n + 1} \right)}}}} \approx \sum\limits_{n = 0}^{\infty } {{\frac{{\left( {2n - 1} \right)!!\left[ {\eta^{2n + 1} + \left( {2n + 1} \right)\eta^{2n} \delta \eta } \right]}}{{\left( {2n} \right)!!\left( {2n + 1} \right)}}}} . $$
(13)

From Eqs. 12 and 13, we have

$$ \left[ {\sin^{ - 1} \left( {\eta + \delta \eta } \right) - \sin^{ - 1} \left( \eta \right)} \right] \approx \sum\limits_{n = 0}^{\infty } {{\frac{{\left( {2n - 1} \right)!!\eta^{2n} \delta \eta }}{{\left( {2n} \right)!!}}}} . $$
(14)

When θ is not so large, for example, θ < 1, the higher-order terms of \( \eta^{2n} \), such as \( \eta^{6} \), \( \eta^{8} \), \( \eta^{10} \),…, can be regarded much smaller than \( \eta^{0} = 1 \). Hence, we have

$$ \left[ {\sin^{ - 1} \left( {\eta + \delta \eta } \right) - \sin^{ - 1} \left( \eta \right)} \right] \approx \delta \eta \left( {1 + {\frac{{\eta^{2} }}{2}} + {\frac{{3\eta^{4} }}{8}}} \right). $$
(15)

When \( 0 < \delta \eta /\eta \ll 1 \) is satisfied and the higher-order terms of \( \eta^{2n} \) are neglected, we also have

$$ \left[ {\left( {\eta + \delta \eta } \right)\sqrt {1 - \left( {\eta + \delta \eta } \right)^{2} } - \eta \sqrt {1 - \eta^{2} } } \right] \approx \delta \eta \left( {1 - {\frac{{3\eta^{2} }}{2}} - {\frac{{5\eta^{4} }}{8}}} \right). $$
(16)

From Eqs. 11, 15 and 16, the authors have

$$ V^{\ast} /\left( {r^{2} b} \right) \approx \delta \eta \left( {2\eta^{2} + \eta^{4} } \right). $$
(17)

Using \( \eta = L_{\text{GB}} /(2r) \), \( \delta \eta = w^{\ast} /(2r) \) and \( r = L_{\text{GB}} /(2\sin \theta ) \), Eq. 3 can be obtained from Eq. 17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunimine, T., Aragaki, T., Fujii, T. et al. Inverse temperature dependence of activation volume in ultrafine-grained copper processed by accumulative roll-bonding. J Mater Sci 46, 4302–4307 (2011). https://doi.org/10.1007/s10853-010-5243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5243-4

Keywords

Navigation