Skip to main content
Log in

The processing of ultrafine-grained materials through the application of severe plastic deformation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of severe plastic deformation (SPD) to bulk metals provides the opportunity of achieving grain sizes in the submicrometer and nanometer range. Several different SPD processing techniques are now available including Equal-Channel Angular Pressing (ECAP), High-Pressure Torsion (HPT) and Accumulative Roll-Bonding (ARB). This paper examines the principles of grain refinement using ECAP and gives examples of the advantageous properties that may be achieved including increased strength at ambient temperatures and a superplastic forming capability at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hall EO (1951) Proc Roy Soc B 54:747

    Google Scholar 

  2. Petch NJ (1953) J Iron Steel Inst 174:25

    CAS  Google Scholar 

  3. Langdon TG (1994) Acta Metall Mater 42:2437

    Article  CAS  Google Scholar 

  4. Zhu YT, Lowe TC, Langdon TG (2004) Scripta Mater 51:825

    Article  CAS  Google Scholar 

  5. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  6. Koch CC, Cho YS (1992) Nanostruct Mater 1:207

    Article  CAS  Google Scholar 

  7. Wang JT (2006) Mater Sci Forum 503–504:363

    Google Scholar 

  8. Srinivasan S, Ranganathan S (2004) India’s legendary wootz steel: an advanced material of the ancient world. National Institute of Advanced Studies and Indian Institute of Science, Bangalore, India

    Google Scholar 

  9. Sherby OD, Wadsworth J (2001) J Mater Proc Technol 117:347

    Article  CAS  Google Scholar 

  10. Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Mater Sci Eng A137:35

    Article  CAS  Google Scholar 

  11. Valiev RZ, Korznikov AV, Mulyukov RR (1993) Mater Sci Eng A168:141

    Article  CAS  Google Scholar 

  12. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33

    Article  Google Scholar 

  13. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russian Metall 1:99

    Google Scholar 

  14. Smirnova NA, Levit VI, Pilyugin VI, Kuznetsov RI, Davydova LS, Sazonova VA (1986) Fiz Metal Metalloved 61:1170

    CAS  Google Scholar 

  15. Salishchev GA, Valiahmetov OR, Galeev RM (1993) J Mater Sci 28:2898, DOI: 10.1007/BF00354692

    Article  CAS  Google Scholar 

  16. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scripta Mater 39:1221

    Article  CAS  Google Scholar 

  17. Varyutkhin VN, Beygelzimer YY, Synkov S, Orlov D (2006) Mater Sci Forum 503–504:335

    Article  Google Scholar 

  18. Horita Z, Fujinami T, Langdon TG (2001) Mater Sci Eng A318:34

    Article  CAS  Google Scholar 

  19. Srinivasan R, Cherukuri B, Chaudhury PK (2006) Mater Sci Forum 503–504:371

    Article  Google Scholar 

  20. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  21. Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1999) Metall Mater Trans 30A:1989

    Article  CAS  Google Scholar 

  22. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143

    Article  CAS  Google Scholar 

  23. Segal VM (1995) Mater Sci Eng A197:157

    Article  CAS  Google Scholar 

  24. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328

    Article  CAS  Google Scholar 

  25. Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) J Mater Sci 36:2835, DOI: 10.1023/A:1017932417043

    Article  CAS  Google Scholar 

  26. Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A332:97

    Article  CAS  Google Scholar 

  27. Oh-ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Metall Mater Trans 29A:2011

    Article  CAS  Google Scholar 

  28. Nakashima K, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:1589

    Article  CAS  Google Scholar 

  29. Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2004) Acta Mater 52:1387

    Article  CAS  Google Scholar 

  30. Furukawa M, Kawasaki Y, Miyahara Y, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:194

    Article  Google Scholar 

  31. Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2006) Mater Sci Eng A420:79

    Article  CAS  Google Scholar 

  32. Miyamoto H, Erb U, Koyama T, Mimaki T, Vinogradov A, Hashimoto S (2004) Phil Mag Lett 84:235

    Article  CAS  Google Scholar 

  33. Miyamoto H, Fushimi J, Mimaki T, Vinogradov A, Hashimoto S (2005) Mater Sci Eng A405:221

    Article  CAS  Google Scholar 

  34. Furukawa M, Fukuda Y, Oh-ishi K, Horita Z, Langdon TG (2006) Mater Sci Forum 503–504:113

    Article  Google Scholar 

  35. Miyamoto H, Fushimi J, Mimaki T, Vinogradov A, Hashimoto S (2006) Mater Sci Forum 503–504:799

    Article  Google Scholar 

  36. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733

    Article  CAS  Google Scholar 

  37. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  38. Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2002) Metall Mater Trans 33A:2173

    Article  CAS  Google Scholar 

  39. Salem AA, Langdon TG, McNelley TR, Kalidindi SR, Semiatin SL (2006) Metall Mater Trans 37A:2879

    Article  CAS  Google Scholar 

  40. Semiatin SL, Berbon PB, Langdon TG (2001) Scripta Mater 44:135

    Article  CAS  Google Scholar 

  41. Langdon TG (2007) Mater Sci Eng (in press)

  42. Kuhlmann-Wilsdorf D (1989) Mater Sci Eng A113:1

    Article  CAS  Google Scholar 

  43. Kuhlmann-Wilsdorf D (1997) Scripta Mater 36:173

    Article  CAS  Google Scholar 

  44. Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Metall Mater Trans 31A:691

    Article  CAS  Google Scholar 

  45. Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Mater Trans JIM 37:336

    Article  CAS  Google Scholar 

  46. Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Mater Sci Eng A265:188

    Article  CAS  Google Scholar 

  47. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1945

    Article  CAS  Google Scholar 

  48. Higashi K, Mabuchi M, Langdon TG (1996) ISIJ Intl 36:1423

    Article  CAS  Google Scholar 

  49. Komura S, Horita Z, Furukawa M, Nemoto M, Langdon TG (2001) Metall Mater Trans 32A:707

    CAS  Google Scholar 

  50. Lee S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Mater Sci Eng A272:63

    Article  CAS  Google Scholar 

  51. Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Acta Mater 48:3633

    Article  CAS  Google Scholar 

  52. Cornfield GC, Johnson RH (1970) Intl J Mech Sci 12:479

    Article  Google Scholar 

  53. Semenova IP, Raab GI, Saitova LR, Valiev RZ (2004) Mater Sci Eng A387–389:805

    Article  Google Scholar 

  54. Stolyarov VV, Gunderov DV, Popov AG, Puzanova TZ, Raab GI, Yavari AR, Valiev RZ (2002) J Magnetism Magnetic Mater 242–245:1399

    Article  Google Scholar 

  55. Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A241:122

    Article  CAS  Google Scholar 

  56. Huang Y, Langdon TG (2002) J Mater Sci 37:4993, DOI: 10.1023/A:1021071228521

    Article  CAS  Google Scholar 

  57. Kumar P, Xu C, Langdon TG (2005) Mater Sci Eng A410–411:447

    Article  Google Scholar 

  58. Valiev RZ, Islamgaliev RK, Kuzmina NF, Li Y, Langdon TG (1999) Scripta Mater 40:117

    Article  CAS  Google Scholar 

  59. Li Y, Langdon TG (2000) J Mater Sci 35:1201, DOI: 10.1023/A:1004740504619

    Article  CAS  Google Scholar 

  60. Kawasaki M, Huang Y, Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:402

    Article  Google Scholar 

  61. Xu C, Furukawa M, Horita Z, Langdon TG (2005) Acta Mater 53:749

    Article  CAS  Google Scholar 

  62. Xu C, Furukawa M, Horita Z, Langdon TG (2003) Acta Mater 51:6139

    Article  CAS  Google Scholar 

  63. Gao N, Starink MJ, Furukawa M, Horita Z, Xu C, Langdon TG (2005) Mater Sci Eng A410–411:303

    Article  Google Scholar 

  64. Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782

    Article  CAS  Google Scholar 

  65. Langdon TG (1982) Metal Sci 16:175

    Article  Google Scholar 

  66. Kawasaki M, Xu C, Langdon TG (2005) Acta Mater 53:5353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Presentation of this paper at the 5th Brazilian Materials Research Society Meeting in Florianópolis in October 2006 was made possible through support from SBPMat (Sociedade Brasileira de Pesquisa em Materiais). I am grateful to Prof. Levi Bueno (Universidade Federal de São Carlos) for making all travel arrangements within Brazil. This work was supported by the National Science Foundation of the United States under Grant No. DMR-0243331 and the U.S. Army Research Office under Grant No. W911NF-05-1-0046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Additional information

Invited paper presented in Symposium C at 5th Brazilian MRS Meeting, Florianópolis, Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langdon, T.G. The processing of ultrafine-grained materials through the application of severe plastic deformation. J Mater Sci 42, 3388–3397 (2007). https://doi.org/10.1007/s10853-006-1475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1475-8

Keywords

Navigation