Skip to main content

Advertisement

Log in

Strengthening Mechanisms and Electrochemical Behavior of Ultrafine-Grained Commercial Pure Copper Fabricated by Accumulative Roll Bonding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the four-cycle accumulative roll bonding (ARB) process at room temperature was successfully used for grain refining in commercial pure copper. Atomic force microscopy (AFM) images revealed that the average grain size reduced from about 26 µm in the unprocessed material to about 180 nm after four cycles of ARB. Also, transmission electron microscopy image indicated that the average grain size reached to 200 nm after four cycles. The yield strength of the ultrafine-grained pure copper after fourth cycle (360 MPa) was about 400 pct higher than that of the annealed unprocessed sample (70 MPa). The contribution of dislocations in strengthening of the pure copper decreased from ~30 to ~3 pct whit increasing the number of ARB cycles from 1 to 4. Scanning electron microscopy micrographs of fractured surfaces of the tensile test specimens revealed that ductile fracture of annealed sample with deep equiaxed dimples replaced by shear ductile rupture with shallow and small elongated dimples in ARB-processed samples. Moreover, electrochemical impedance spectroscopy and Mott–Schottky analysis showed that the electrochemical behavior improved by increasing the number of ARB cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1. A. Fattah-alhosseini and O. Imantalab: J. Alloys Compd., 2015, vol. 632, pp. 48–52.

    Article  Google Scholar 

  2. 2. O. Imantalab and A. Fattah-alhosseini: J. Mat. Eng. Perf., 2015, vol. 24, pp. 2579–2585.

    Article  Google Scholar 

  3. 3. A. Fattah-alhosseini and S. Vafaeian: J. Alloys Compd., 2015, vol. 639, pp. 301–307.

    Article  Google Scholar 

  4. 4. H. Halfa: JMMCE, 2014, vol. 2, pp. 428–469.

    Article  Google Scholar 

  5. 5. Y. Zhu, R.Z. Valiev, T.G. Langdon, N. Tsuji, and K. Lu: MRS bulletin, 2010, vol. 35, pp. 977–981.

    Article  Google Scholar 

  6. 6. A. Fattah-alhosseini and S.O. Gashti: J. Mat. Eng. Perf., 2015, vol. 24, pp. 3386–3393.

    Article  Google Scholar 

  7. 7. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., NACE, Houston, 1974.

    Google Scholar 

  8. 8. Q.J. Zhong, L.B. Yu, Y. Xiao, Y. Wang, Q.Y. Zhou, and Q.D. Zhong: Advanc. Mater. Res., 2013, vols. 785-786, pp. 928–932.

    Article  Google Scholar 

  9. 9. S.H. Sanad and A.R. Taman: Surf. Tech., 1984, vol. 23, pp. 159–166.

    Article  Google Scholar 

  10. 10. R. Jamaati and M.R. Toroghinejad: Mater. Sci. Eng. A, 2014, vol. 606, pp. 443–450.

    Article  Google Scholar 

  11. 11. S.A. Hosseini and H. Danesh Manesh: Mater. Des., 2009, vol. 30, pp. 2911–2918.

    Article  Google Scholar 

  12. 12. M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati: Mater. Sci. Eng. A, 2013, vol. 561, pp. 145–151.

    Article  Google Scholar 

  13. 13. M. Eizadjou, H. Danesh Manesh, and K. Janghorban: J. Alloys Compd., 2009, vol. 474, pp. 406–415.

    Article  Google Scholar 

  14. 14. Z.P. Xing, S.B. Kang, and H.W. Kim: Metall. Mater. Trans. A, 2006, vol. 33, pp. 1521–1530.

    Article  Google Scholar 

  15. 15. S.S. Satheesh Kumar and T. Raghu: Mater. Des., 2014, vol. 57, pp. 114–120.

    Article  Google Scholar 

  16. 16. L. Su, C. Lu, H. Li, G. Deng, and K. Tieu: Mater. Sci. Eng. A, 2014, vol. 614, pp. 148–155.

    Article  Google Scholar 

  17. 17. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens: Mater. Sci. Eng. A, 2008, vol. 497, pp. 132–138.

    Article  Google Scholar 

  18. 18. C. Kwan, Z.R. Wang, and S.B. Kang: Mater. Sci. Eng. A, 2008, vol. 480, pp. 148–159.

    Article  Google Scholar 

  19. 19. N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801–806.

    Article  Google Scholar 

  20. 20. J. Gubicza, N.Q. Chinh, T. Csanadi, T.G. Langdon, and T. Ungar: Mater. Sci. Eng. A, 2007, vol. 462, pp. 86–90.

    Article  Google Scholar 

  21. 21. N. Hansen, X. Huang, and D.A. Hughes: Mater. Sci. Eng. A, 2001, vol. 317, pp. 3–11.

    Article  Google Scholar 

  22. 22. N. Hansen: Mater. Sci. Eng. A, 2005, vol. 409, pp. 39–45.

    Article  Google Scholar 

  23. 23. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Acta Mater., 2010, vol. 58, pp. 1152–1211.

    Article  Google Scholar 

  24. 24. J. Kratochvil, M. Kruzik, and R. Sedlacek: Acta Mater., 2009, vol. 57, pp. 739–748.

    Article  Google Scholar 

  25. 25. S.C. Yoon, Z. Horita, and H.S. Kim: J. Mater. Process. Technol., 2008, vol. 201, 32–36.

    Article  Google Scholar 

  26. 26. X. Huang, N. Kamikawa, and N. Hansen: Mater. Sci. Eng. A, 2008, vol. 483, pp. 102–104.

    Article  Google Scholar 

  27. A. Nazari, J. A. Mohandesi, and S. Tavareh: Comput. Mater. Sci., 2011, vol. 50, pp. 1781–1784.

    Article  Google Scholar 

  28. 28. S. Graça, R. Colaço, P.A. Carvalho, and R. Vilar, Mater. Lett., 2008, vol. 62, pp. 3812–3814.

    Article  Google Scholar 

  29. 29. R. Jamaati, M.R. Toroghinejad, S. Amirkhanlou, and H. Edris, Metall. Mater. Trans. A, 2015, vol. 46, pp. 4013–4019.

    Article  Google Scholar 

  30. 30. M. Reihanian, R. Ebrahimi, N. Tsuji, and M.M. Moshksar: Mater. Sci. Eng. A, 2008, vol. 473, pp. 189–194.

    Article  Google Scholar 

  31. 31. W. Lojkowski: Acta Metall. Mater., 1991, vol. 39, pp. 1891–1899.

    Article  Google Scholar 

  32. 32. R. Jamaati, M.R Toroghinejad, and A. Najafizadeh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2720–2724.

    Article  Google Scholar 

  33. 33. D.H. Shin, J.J. Park, Y.S. Kim, and K.T. Park: Mater. Sci. Eng. A, 2002, vol. 328, pp. 98–103.

    Article  Google Scholar 

  34. 34. S. Pasebani and M.R. Toroghinejad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 491–497.

    Article  Google Scholar 

  35. 35. M. Shaarbaf and M.R. Toroghinejad: Mater. Sci. Eng. A, 2008, vol. 473, pp. 28–33.

    Article  Google Scholar 

  36. 36. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-189.

    Article  Google Scholar 

  37. 37. G. Palumbo, K.T. Aust, U. Erb, Mater. Sci. Forum, 1996, vol. 225-227, pp. 281-286.

    Article  Google Scholar 

  38. 38. H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S. Ghobadi Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K.J. Kurzydlowski: Mater. Sci. Eng. C, 2014, vol. 39, pp. 299–304.

    Article  Google Scholar 

  39. 39. A. Fattah-alhosseini and O. Imantalab: Metall. Mater. Trans. A, 2016, vol. 47, pp. 572–580.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Mazaheri.

Additional information

Manuscript submitted October 17, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imantalab, O., Fattah-Alhosseini, A., Mazaheri, Y. et al. Strengthening Mechanisms and Electrochemical Behavior of Ultrafine-Grained Commercial Pure Copper Fabricated by Accumulative Roll Bonding. Metall Mater Trans A 47, 3684–3693 (2016). https://doi.org/10.1007/s11661-016-3519-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3519-2

Keywords

Navigation