Skip to main content
Log in

Morphological and biological characterization of density engineered foams fabricated by ultrasonic sonication

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The successful manufacture of functionally tailored materials (e.g., density engineered foams) for advanced applications (e.g., structures or in bioengineering) requires an effective control over the process variables. In order to achieve this, density gradation needs to be represented and quantified. Current density measurement techniques offer information on bulk values, but neglect local position as valuable information (i.e., do not associate density scalar values with specific location, which is frequently critical when mechanical properties or functionalities have to be engineered). In this article, we present a method that characterizes the density gradation of engineered foams manufactured by the sonication technique, which allows the generation of sophisticated porous architectures beyond a simple linear gradient. A 3D data capture (μCT) and a flexible analysis software program (ImageJ) are used to obtain “global” density gradation values that can, ultimately, inform, control, and optimize the manufacture process. Polymeric foams, i.e., polyurethane (PU) foams, were used in this study as proof of concept. The measurements performed on the PU foams were validated by checking consistency in the results for both horizontal and vertical image slices. Biological characterization was done to assess the samples’ tailored structure viability as scaffolds for tissue engineering. The comparison between untreated and sonicated samples yielded a 12.7% of increment in living cell count adhered to the walls after treatment. The conclusions drawn from this study may inform the design and manufacture of density-engineered materials used in other fields (e.g., structural materials, optoelectronics, food technology, etc.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schoonman A, Mayor G, Dillmann M-L, Bisperink C, Ubbink J (2001) Food Res Int 34:913

    Article  CAS  Google Scholar 

  2. Willoughby AFW (2006) Philos Trans R Soc A 364:175

    Article  CAS  Google Scholar 

  3. Kelly A (2006) Philos Trans R Soc A 364:5

    Article  CAS  Google Scholar 

  4. Youn JR, Park H (1999) Polym Eng Sci 39:457

    Article  CAS  Google Scholar 

  5. Yan X, Gu P (1996) Comput Aided Des 28:307

    Article  Google Scholar 

  6. Dutta D, Prinz FB, Rosen D, Weiss LE (2001) J Comput Inf Sci Eng 1:60

    Article  Google Scholar 

  7. Rajagopalan S, Robb RA (2006) Med Image Anal 10:693

    Article  Google Scholar 

  8. Leong KF, Chua CK, Sudarmadji N, Yeong WY (2008) J Mech Behav Biomed Mater 1:140

    Article  CAS  Google Scholar 

  9. Woesz A, Rumpler M, Stampfl J, Varga F, Fratzl-Zelman N, Roschger P, Klaushofer K, Fratzl P (2005) Mater Sci Eng C 25:181

    Article  Google Scholar 

  10. Fukasawa T, Deng ZY, Ando M, Ohji T, Goto Y (2001) J Mater Sci 36:2523. doi:10.1023/A:1017946518955

    Article  CAS  Google Scholar 

  11. Deville S, Saiz E, Tomsia AP (2006) Biomaterials 27:5480

    Article  CAS  Google Scholar 

  12. Sepulveda P, Binner JGP (1999) J Eur Ceram Soc 19:2059

    Article  CAS  Google Scholar 

  13. Rojas AJ, Marciano JH, Williams RJ (1982) Polym Eng Sci 22:840

    Article  CAS  Google Scholar 

  14. Spoerke ED, Murray NG, Li H, Brinson LC, Dunand DC, Stupp SI (2005) Acta Biomater 1:523

    Article  Google Scholar 

  15. Kathuria YP (2003) J Mater Sci 38:2875. doi:10.1023/A:1024488503856

    Article  CAS  Google Scholar 

  16. Schwarzwalder K, Somers AV (1963) Method of making a porous shape of sintered refractory ceramic articles. United States Patent Office: US3090094

  17. Brothers AH, Dunand DC (2006) Adv Eng Mater 8:805

    Article  CAS  Google Scholar 

  18. Muhamad Nor MAA, Hong LC, Arifin Ahmad Z, Md Akil H (2008) J Mater Process Technol 207:235

    Article  CAS  Google Scholar 

  19. Banhart J (2001) Prog Mater Sci 46:559

    Article  CAS  Google Scholar 

  20. Mohamad Yunos D, Bretcanu O, Boccaccini A (2008) J Mater Sci 43:4433. doi:10.1007/s10853-008-2552-y

    Article  CAS  Google Scholar 

  21. Colombo P, Hellmann J (2002) Mater Res Innov 6:260

    Article  CAS  Google Scholar 

  22. Bil M, Ryszkowska J, Kurzydłowski K (2009) J Mater Sci 44:1469. doi:10.1007/s10853-008-3037-8

    Article  CAS  Google Scholar 

  23. Torres-Sánchez C, Corney J (2008) Ultrason Sonochem 15:408

    Article  Google Scholar 

  24. Leighton TG (1995) Ultrason Sonochem 2:S123

    Article  Google Scholar 

  25. Torres-Sánchez C, Corney J (2009) J Polym Res 16:461

    Article  Google Scholar 

  26. Torres-Sanchez C, Corney JR (2009) ASME J Mech Des 131:91011

    Article  Google Scholar 

  27. Torres-Sanchez C, Corney JR (2009) IOP J Smart Mater Struct 18:104001

    Article  Google Scholar 

  28. Mullens S, Luyten J, Zeschky J (2005) In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 225–66

  29. Malcolm AA, Leong HY, Spowage AC, Shacklock AP (2007) J Mater Process Technol 192:391

    Article  Google Scholar 

  30. Dobrzanski LA, Musztyfaga M, Grande MA, Rosso M (2009) Arch Mater Sci Eng 38:103

    Google Scholar 

  31. Torres-Sanchez C, Corney JR (2010) A novel manufacturing strategy for bio-inspired cellular structures. Int J Des Eng: Special Issue “Design in Nature” (submitted)

  32. Collins TJ (2007) BioTechniques 43:S25

    Article  Google Scholar 

  33. Awcock GJ, Thomas R (1996) Applied image processing. McGraw-Hill, Inc., Singapore

Download references

Acknowledgements

The authors would like to thank Dr Paul Tatum, at AWE plc, for allowing the acquisition of the μCT images for the samples in this study; Dr Ruggero Gabbrielli for the photograph in Fig. 1a and Dr Krassimir Dotchev for assistance in the fabrication of the sample at the Manufacturing Engineering Centre in Cardiff University; Dr Donald Fawcett, from Visuals Unlimited Inc. for Fig. 1b. Dr Sarah Cartmell and Dr Lilia Araida Hidalgo-Bastida from Keele University kindly provided the images from the viability study in Fig. 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Torres-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Sánchez, C., Corney, J.R. Morphological and biological characterization of density engineered foams fabricated by ultrasonic sonication. J Mater Sci 46, 490–499 (2011). https://doi.org/10.1007/s10853-010-4944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4944-z

Keywords

Navigation