Skip to main content

Advertisement

Log in

Investigation of osteoblast-like MC3T3-E1 cells on a novel recombinant collagen-like protein surface with triple helix structure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fol-8Col is a novel recombinant collagen-like protein incorporated with foldon sequences derived from the native T4 phage fibritin. In this paper, we examined the potential of using Fol-8Col as scaffold for bone tissue engineering. Circular dichroism (CD) spectra indicate that the triple helix structure of Fol-8Col exists at temperatures ranging from 4 to 40 °C. Lactate dehydrogenase assay results and live/death cell staining of osteoblast-like MC3T3-E1 cells, cultivated on Fol-8Col for 24 h, showed evidence of cell cytocompatibility comparable to that of native type I collagen. Attachment and spreading of osteoblast-like MC3T3-E1 cells seeded on Fol-8Col were studied by immunofluorescence staining of cell nuclei, vinculin, and F-actin. Intensive focal adhesion patches and an elongated cortical actin cytoskeleton were observed after 24 hours’ cultivation. Proliferation assays of MC3T3-E1 cells cultivated on Fol-8Col for 2 weeks revealed no consistent differences in rate and pattern compared to growth on type I collagen. Alkaline phosphatase activity assay and osteogenic gene expression, detected by RT-PCR, evaluated the osteogenic differentiation of MC3T3-E1 cells on Fol-8Col. This study shows that Fol-8Col, with a triple helix structure, has good potential for application in bone regeneration as a replacement for native collagen, thereby reducing the risk of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. George A, Veis A (2008) Chem Rev 108:4670

    Article  CAS  Google Scholar 

  2. Bhowmik R, Katti KS, Katti DR (2007) J Mater Sci 42:8795. doi:10.1007/s10853-007-1914-1

    Article  CAS  Google Scholar 

  3. Hardmeier R, Redl H, Marlovits S (2010) J Tissue Eng Regen Med 4:1

    CAS  Google Scholar 

  4. Canty EG, Kadler KE (2002) Comp Biochem Physiol A 133:979

    Article  CAS  Google Scholar 

  5. Yasui T, Tohno Y, Araki T (2004) J Biomed Opt 9:259

    Article  CAS  Google Scholar 

  6. Wahl DA, Sachlos E, Liu C, Czernuszka JT (2007) J Mater Sci Mater Med 18:201

    Article  CAS  Google Scholar 

  7. Hsu FY, Chueh SC, Wang YJ (1999) Biomaterials 20:1931

    Article  CAS  Google Scholar 

  8. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) J Biomed Mater Res 60:613

    Article  CAS  Google Scholar 

  9. Yao J, Yanagisawa S, Asakura T (2004) J Biochem 136:643

    Article  CAS  Google Scholar 

  10. Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Trends Biotechnol 27:423

    Article  CAS  Google Scholar 

  11. Du C, Wang M, Liu J, Pan M, Cai Y, Yao J (2008) Appl Microbiol Biotechnol 79:195

    Article  CAS  Google Scholar 

  12. Kawska A, Hochrein O, Brickmann J, Kniep R, Zahn D (2008) Angew Chem Int Ed Engl 47:4982

    Article  CAS  Google Scholar 

  13. Specchia N, Pagnotta A, Cappella M, Tampieri A, Greco F (2002) J Mater Sci 37:577. doi:10.1023/A:1013725809480

    Article  CAS  Google Scholar 

  14. Fratzl-Zelman N, Fratzl P, Hörandner H, Grabner B, Varga F, Ellinger A, Klaushofer K (1998) Bone 23:511

    Article  CAS  Google Scholar 

  15. Laemmli UK (1970) Nature 227:680

    Article  CAS  Google Scholar 

  16. Tomihata K, Ikada Y (1996) Tissue Eng 2:307

    Article  CAS  Google Scholar 

  17. Chilkoti A, Schmierer AE, Pérez-Luna VH, Ratner BD (1995) Anal Chem 67:2883

    Article  CAS  Google Scholar 

  18. Pieters IY, Van den Vreken NM, Declercq HA, Cornelissen MJ, Verbeeck RM (2010) Acta Biomater 6:1561

    Article  CAS  Google Scholar 

  19. Taylor PM, Sachlos E, Dreger SA, Chester AH, Czernuszka JT, Yacoub MH (2006) Biomaterials 27:2733

    Article  CAS  Google Scholar 

  20. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) J Bone Miner Res 7:683

    Article  CAS  Google Scholar 

  21. Raouf A, Seth A (2002) Bone 30:463

    Article  CAS  Google Scholar 

  22. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Cell 89:747

    Article  CAS  Google Scholar 

  23. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Genes Dev 19:1093

    Article  CAS  Google Scholar 

  24. Stein GS, Lian JB, Owen TA (1990) FASEB J 4:3111

    CAS  Google Scholar 

  25. Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM (2004) Oncogene 23:4315

    Article  CAS  Google Scholar 

  26. Sato M, Morii E, Komori T, Kawahata H, Sugimoto M, Terai K, Shimizu H, Yasui T, Ogihara H, Yasui N, Ochi T, Kitamura Y, Ito Y, Nomura S (1998) Oncogene 17:1517

    Article  CAS  Google Scholar 

  27. Giachelli CM, Steitz S (2000) Matrix Biol 19:615

    Article  CAS  Google Scholar 

  28. Al-Jallad HF, Nakano Y, Chen JL, McMillan E, Lefebvre C, Kaartinen MT (2006) Matrix Biol 25:135

    Article  CAS  Google Scholar 

  29. Nokelainen M, Tu H, Vuorela A, Notbohm H, Kivirikko KI, Myllyharju J (2001) Yeast 18:797

    Article  CAS  Google Scholar 

  30. Ruggiero F, Koch M (2008) Methods 45:75

    Article  CAS  Google Scholar 

  31. Mohs A, Silva T, Yoshida T, Amin R, Lukomski S, Inouye M, Brodsky B (2007) J Biol Chem 282:29757

    Article  CAS  Google Scholar 

  32. Krishna OD, Kiick KL (2009) Biomacromolecules 10:2626

    Article  CAS  Google Scholar 

  33. Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA (2003) J Biol Chem 278:645

    Article  CAS  Google Scholar 

  34. Philippeaux MM, Bargetzi JP, Pache JC, Robert J, Spiliopoulos A, Mauël J (2009) Eur J Cell Biol 88:243

    Article  CAS  Google Scholar 

  35. Horii A, Wang X, Gelain F, Zhang S (2007) PLoS One 2:e190

    Article  Google Scholar 

  36. Peng YY, Yoshizumi A, Danon SJ, Glattauer V, Prokopenko O, Mirochnitchenko O, Yu Z, Inouye M, Werkmeister JA, Brodsky B, Ramshaw JA (2010) Biomaterials 31:2755

    Article  CAS  Google Scholar 

  37. Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T (2007) Biomacromolecules 8:3487

    Article  CAS  Google Scholar 

  38. Chen W, Chang CE, Gilson MK (2006) J Am Chem Soc 128:4675

    Article  CAS  Google Scholar 

  39. Steplewski A, Hintze V, Fertala A (2007) J Struct Biol 157:297

    Article  CAS  Google Scholar 

  40. Zhai Y, Cui FZ (2006) J Cryst Growth 291:202

    Article  CAS  Google Scholar 

  41. Ner Y, Stuart JA, Whited G, Sotzing GA (2009) Polymer 50:5828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Global COE Program by the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Bao, X.X., Matsuda, N. et al. Investigation of osteoblast-like MC3T3-E1 cells on a novel recombinant collagen-like protein surface with triple helix structure. J Mater Sci 46, 1396–1404 (2011). https://doi.org/10.1007/s10853-010-4933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4933-2

Keywords

Navigation