Skip to main content
Log in

Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As often seen in biological structural materials, bone exhibits complex hierarchical structure. The primary constituents of bone are collagen and hydroxyapatite (HAP). HAP mineralizes at specific locations at collagen, in such a way that the c-axis of HAP aligns parallel to collagen molecule. The collagen molecule is helical overall with non-helical ends that are N- or C-telopeptides. The collagen molecule with telopeptides interacts with specific surfaces of mineralized HAP. When subjected to load, the interactions at the interface between HAP and collagen may significantly affect the overall mechanics of the collagen molecule. Here, we have performed molecular dynamics (MD) and steered MD (SMD) simulations in order to understand the load carrying behavior of collagen in the proximity of HAP. Our simulations indicate that the load-deformation response of collagen is different when it interacts with HAP as compared to its response in the absence of HAP. The interface between HAP and collagen affects the overall load-deformation response of collagen. Further, bone also has considerable amount of water and we have observed that water significantly influences the load-deformation response of collagen due to collagen-water-HAP interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marieb EN (1998) In: Human anatomy & physiology, 4th edn. Benjamin/Cummings Science Publishing, Menlo Park, California

  2. Tortora GJ (1989) In: Principles of human anatomy, 5th edn. Harper & Row Publishers, New York

  3. Boyle WJ, Simonet WS, Lacey DL (2003) Nature 423:337

    Article  CAS  Google Scholar 

  4. Von Recum AF (1998) In: Handbook of biomaterials evaluation. CRC Publisher

  5. Ramakrishna S, Mayer J, Wintermantel E, Leong WK (2001) Comp Sci Tech 61:1189

    Article  CAS  Google Scholar 

  6. Black J (1992) In: Biological performance of materials: fundamentals of biocompatibility. Marcel Dekker, New York

  7. Weiner S, Wagner HD (1998) Ann Rev Mater Res 28:271

    Article  CAS  Google Scholar 

  8. Weiner S, Traub W (1992) FASEB 6:879

    CAS  Google Scholar 

  9. Landis WJ (1995) Bone 16:533

    Article  CAS  Google Scholar 

  10. Katti KS, Gujjula P (2002) In: Proceedings of 15th ASCE engineering mechanics conference, New York, NY

  11. Verma D, Katti K, Katti D (2006) J Biomed Mater Res 77:59

    Article  CAS  Google Scholar 

  12. Verma D, Katti K, Katti D (2006) J Biomed Mater Res 78A:772

    Article  CAS  Google Scholar 

  13. Katti KS, Turlapati P, Verma D, Bhowmik R, Gujjula P, Katti DR (2006) Am J Biochem Biotech 2:73

    Article  CAS  Google Scholar 

  14. Katti KS (2004) Colloids Interfaces B 39:133

    CAS  Google Scholar 

  15. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Proc Natl Acad Sci USA 100:5597

    Article  CAS  Google Scholar 

  16. Gao H, Chen S (2005) J Appl Mech 72:732

    Article  Google Scholar 

  17. Ji B, Gao H (2004) Mater Sci Eng A 366:96

    Article  CAS  Google Scholar 

  18. Ji B, Gao H (2004) J Mech Phys Solids 52:1963

    Article  Google Scholar 

  19. Ji B, Gao H, Hsia KJ (2004) Phil Mag Lett 84:631

    Article  CAS  Google Scholar 

  20. Gao H, Ji B (2003) Eng Frac Mech 70:1777

    Article  Google Scholar 

  21. Ji B, Gao H (2006) Comp Sci & Tech 66:1212

    Article  CAS  Google Scholar 

  22. Buehler MJ (2006) PNAS 103:12285

    Article  CAS  Google Scholar 

  23. Buehler MJ (2006) J Mat Sci 21:1947

    CAS  Google Scholar 

  24. Hellmich C, Barthélémy J-F, Dormieux L (2004) Eur J Mech A/Solids 23:783

    Article  Google Scholar 

  25. Fritsch A, Hellmich C (2007) J Theor Biol 244:597

    Article  CAS  Google Scholar 

  26. Reilly DT, Burstein AH, Frankel VH (1974) J Biomech 7:271

    Article  CAS  Google Scholar 

  27. Rho JY, Tsui TY, Pharr GM (1997) Biomaterials 18:1325

    Article  CAS  Google Scholar 

  28. Murugan R, Ramakrishna S (2005) Comp Sci & Tech 65:2385

    Article  CAS  Google Scholar 

  29. Jae-Young Rho L. Kuhn-Spearing, Zioupos P (1998) Med Eng & Phy 20:92

    Article  Google Scholar 

  30. Landis WJ (1995) Bone 16:533

    Article  CAS  Google Scholar 

  31. Ziv V, Weiner S (1994) Conn Tissue Res 30:165

    CAS  Google Scholar 

  32. Ghosh P, Katti DR, Katti KS (2007) Biomacromolecules 8:851

    Article  CAS  Google Scholar 

  33. Legeros RZ (1994) In: Biological and synthetic apatites. CRC Press, Boca Raton

  34. Park JB (1984) In: Biomaterials science and engineering. Plenum Press, New York

  35. Murugan R, Ramakrishna S (2004) In: Encyclopedia of nanoscience and nanotechnology, vol 7. American Scientific Publishers, California, p 595

  36. Dempster WT, Liddicoat RT (1952) Am J Anatomy 91:331

    Article  CAS  Google Scholar 

  37. Evans FG (1973) Mechanical properties of bone. Thomas, Springfield

    Google Scholar 

  38. Evans FG, Lebow M (1951) J Appl Physiol 3:563

    CAS  Google Scholar 

  39. Sedlin ED, Hirsch C (1966) Acta Orthopaedica Scandinavica 37:29

    Article  CAS  Google Scholar 

  40. Smith JW, Walmsley R (1959) J Anatomy 93:503

    CAS  Google Scholar 

  41. Yamada H, Evans FG (1970) Strength of biological materials. Williams & Wilkins, Baltimore

    Google Scholar 

  42. Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH Wang X (2006) J Biomech 39:931

    Article  Google Scholar 

  43. Currey JD (1965) J Exp Biol 43:279

    Google Scholar 

  44. Fitton-Jackson S (1957) Proc R Soc London Ser B 146:270

    Google Scholar 

  45. Nylen MU, Scott DB, Mosley VM (1960) In: Sognnaes RF (ed) Calcification in Biological Systems. Am Assoc Adv Sci p 129

  46. Itoha S, Masanori K, Koyamac Y, Takakudac K, Shinomiyaa K, Tanaka J (2002) Biomaterials 23:3919

    Article  Google Scholar 

  47. Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Biochem J 316:1

    CAS  Google Scholar 

  48. Malone JP, Alvares K, Veis A (2005) Biochem 44:15269

    Article  CAS  Google Scholar 

  49. Malone JP, George A, Veis A (2004) Proteins: Struct Funct & Biol 54:206

    Article  CAS  Google Scholar 

  50. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten KJ (1999) Comput Phys 151:283 http://www.ks.uiuc.edu/Research/namd/, as on 16 January 2007

  51. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus MJ (1983) J Comput Chem 4:187

    Article  CAS  Google Scholar 

  52. Humphrey W, Dalke A, Schulten KJ (1996) J Mol Graphics 14:33, http://www.ks.uiuc.edu/Research/vmd/, as on 16 January 2007

    Google Scholar 

  53. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613

    Article  CAS  Google Scholar 

  54. Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101:4177

    Article  CAS  Google Scholar 

  55. Beck K, Brodsky B (1998) J Struct Biol 122:17

    Article  CAS  Google Scholar 

  56. Berisio R, Vitagliano L, Mazzarella L, Zagari A (2002) Protein Sci 11:262

    Article  CAS  Google Scholar 

  57. Jones EY, Miller A (1987) Biopolymers 26:463

    Article  CAS  Google Scholar 

  58. Otter A, Kotovych G, Scott PG (1989) Biochemistry 28:8003

    Article  CAS  Google Scholar 

  59. Sudarsanan K, Young RA (1969) Acta Crystallographica B 25:1534

    Article  CAS  Google Scholar 

  60. Bhowmik R, Katti KS, Verma D, Katti DR (2007) Mater Sci Eng C 27:352

    Article  CAS  Google Scholar 

  61. Bhowmik R, Katti KS, Katti D (2006) Polymer 48:664

    Article  CAS  Google Scholar 

  62. Tasker PW (1979) J Phys C Solid State Phys 12:4977

    Article  CAS  Google Scholar 

  63. Bertaut FCR (1958) Acad Sci Paris 246:3447

    CAS  Google Scholar 

  64. Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Biophys J 72:1568

    CAS  Google Scholar 

  65. Isralewitz B, Izrailev S, Schulten K (1997) Biophys J 73:2972

    CAS  Google Scholar 

  66. Wriggers W, Schulten K (1999) Proteins Struct Funct Genet 35:262

    Article  CAS  Google Scholar 

  67. Kosztin D, Izrailev S, Schulten K (1999) Biophys J 76:188

    Article  CAS  Google Scholar 

  68. Molnar F, Ben-Nun M, Marti´Nez TJ, Schulten K (2000) J Mol Struct (THEOCHEM) 506:169

    Article  CAS  Google Scholar 

  69. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Biophys J 75:662

    CAS  Google Scholar 

  70. Krammer A, Lu H, Isralewitz B, Schulten K, Vogel V (1999) Proc Natl Acad Sci USA 96:1351

    Article  CAS  Google Scholar 

  71. Lu H, Schulten K (1999) Proteins Struct Funct Genet 35:453

    Article  Google Scholar 

  72. Lu H, Schulten K (1999) Chem Phys 247:141

    Article  CAS  Google Scholar 

  73. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K (1998) In: Computational molecular dynamics: challenges, methods, ideas. volume 4 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin p 39

  74. Schulten K, Schulten Z, Szabo A (1981) J Chem Phys 74:4426

    Article  CAS  Google Scholar 

  75. Lu H, Krammer A, Isralewitz B, Vogel V, Schulten K (2000) In: Elastic filaments of the cell. Academic/Plenum Publishers, New York, p 143

  76. Grubmüller H, Heymann B, Tavan P (1996) Science 271:997

    Article  Google Scholar 

  77. Balsera M, Stepaniants S, Oono Y, Schulten K (1997) Biophys J 73:1281

    CAS  Google Scholar 

  78. Gao M, Wilmanns M, Schulten K (2002) Biophysical J 83:3435

    CAS  Google Scholar 

Download references

Acknowledgments

This research is partially funded by grant from National Science Foundation (CAREER grant # 0132768). The computational resources provided by National Center of Superconducting applications (NCSA) at University of Illinois at Urbana-Champaign (UIUC) through Teragrid are acknowledged. The authors would also like to acknowledge Dr. Gregory H. Wettstein and Francis Larson of Center for High Performance Computing (CHPC), NDSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana S. Katti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmik, R., Katti, K.S. & Katti, D.R. Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J Mater Sci 42, 8795–8803 (2007). https://doi.org/10.1007/s10853-007-1914-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1914-1

Keywords

Navigation