Skip to main content

Advertisement

Log in

Excimer laser ablation of single crystal 4H-SiC and 6H-SiC wafers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A 248 nm, 23 ns pulsed excimer laser was used to compare the ablation characteristics of single crystal wafers of the polytypes 4H-SiC and 6H-SiC over a wide range of energy fluence (0.8–25 J cm−2). Photothermal models based on Beer–Lambert equation using thermal diffusivity and absorption coefficient, energy balance, and heat transfer were presented to predict the ablation mechanisms. Micromachining of trenches was demonstrated at 7 J cm−2 to demonstrate the potential of UV laser ablation. Results indicate that the ablation process is characterized by two well-defined threshold fluences: (a) decomposition threshold ~1 J cm−2 and (b) melting threshold ~1.5 J cm−2 for both polytypes. Contrary to the modeling expectations, the ablation rates were lower and did not increase rapidly with energy fluence. Four types of ablation mechanisms—chemical decomposition, vaporization, explosive boiling, and plasma shielding—either singly or in combination occur as a function of energy fluence. The predictions of photothermal models were not in good agreement with the experimental data implying that a complex interplay among various physical phenomena occurs during ablation. Micromachined trench exhibited ripple patterns, microcracks and recast layers, most of which could be eliminated by a subsequent chemical cleaning process. It is concluded that excimer laser ablation is an effective but slow material removal process for SiC wafers compared to other lasers such as 1064 nm Nd:YAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Östling M, Koo SM, Zetterling CM, Khartsev S, Grishin A (2004) Thin Solid Films 469–470:444

    Article  Google Scholar 

  2. Dong Y, Zorman C, Molian P (2003) J Micromech Microeng 13:680

    Article  CAS  Google Scholar 

  3. Young DJ, Jiangang D, Zorman C, Ko WH (2004) IEEE Sens J 4:464

    Article  CAS  Google Scholar 

  4. Jepps NW, Page T (1983) In: Krishna P (ed) Progress in crystal growth and characterization. Pergamon Press, Oxford

    Google Scholar 

  5. Méndez D, Aouni A, Araújo D, Bustarret E, Ferro G, Monteil Y (2005) Mater Sci Forum 483–485:555

    Article  Google Scholar 

  6. Zhang J, Sugioka K, Wada S, Tashiro H, Toyoda K, Midorikawa K (1998) Appl Surf Sci 127–129:793

    Article  Google Scholar 

  7. Mehregany M, Zorman C (1999) Thin Solid Films 355–356:518

    Article  Google Scholar 

  8. Pearton SJ, Abernathy CR, Gila BP, Ren F, Zavada JM, Park YM (2004) Solid State Electron 48:827

    Article  Google Scholar 

  9. Palma C, Sapia C (2000) J Electron Mater 29:607

    Article  CAS  Google Scholar 

  10. Kim S, Bang BS, Ren F, D’Etremont J, Blumenfeld W, Cordock T, Pearson SJ (2004) J Electron Mater 33:477

    Article  CAS  Google Scholar 

  11. Schlaf M, Sands D, Key PH (2000) Appl Surf Sci 154–155:83

    Article  Google Scholar 

  12. Zekentes K, Zergioti I, Klini A, Constantindis G (2006) Mater Sci Forum 527–529:1119

    Article  Google Scholar 

  13. Battula A, Theppakuttai S, Chen S (2006) J Microlith Microfab Microsys 5:011009-1

    Google Scholar 

  14. Zhang J, Sugioka K, Wada S, Tashiro H, Toyoda K (1997) Appl Phys A 64:367

    Article  CAS  Google Scholar 

  15. Itoh N (1997) Nucl Instrum Methods B 122:405

    Article  CAS  Google Scholar 

  16. Lambrecht WRL, Segall B, Suttrop W, Yoganathan M, Devaty RP, Choyke WJ, Edmond JA, Powell JA, Alouani M (1993) Appl Phys Lett 63:2747

    Article  CAS  Google Scholar 

  17. Logothetidis S, Petalas J (1996) J Appl Phys 80:1768

    Article  CAS  Google Scholar 

  18. Sridhara SG, Devaty RP, Choyke WJ (1998) J Appl Phys 84:2963

    Article  CAS  Google Scholar 

  19. Blank TV, Goldberg YA, Kalinina EV, Konstantinov OV, Konstantinov AO, Hall′en A (2005) Semicond Sci Technol 20:710

    Article  CAS  Google Scholar 

  20. Philipp HR, Taft EA (1960) In: O’Connor JR, Smiltens J (eds) Silicon carbide—a high temperature semiconductor. Pergamon Press, Oxford, London, New York, Paris

    Google Scholar 

  21. Levinshtein ME, Rumyantsev SL, Shur MS (2001) Properties of advanced semicondutor materials. Wiley, New York

    Google Scholar 

  22. Zetterling C-M (2002) Process technology for silicon carbide. INSPEC, London

    Google Scholar 

  23. Nilsson O, Mehling H, Horn R, Fricke J, Hofmann R, Muller SG, Eckstein R, Hofmann D (1997) High Temp High Press 29:73

    Article  CAS  Google Scholar 

  24. Desbiens J-P, Masson P (2007) Sens Actuators A 136:554

    Article  Google Scholar 

  25. Tseng AA, Chen Y-T, Ma K-J (2004) Opt Lasers Eng 41:827

    Article  Google Scholar 

  26. Reitano R, Baeri P (1996) Nucl Instrum Methods Phys Res B 116:369

    Article  CAS  Google Scholar 

  27. von der Linde D, Sokolowski-Tinten K, Bialkowski J (1997) Appl Surf Sci 109–110:1

    Google Scholar 

  28. McGeough J (2002) Micromachining of engineering materials. Marcel Dekker Inc., New York, Basel, pp 219–221

    Google Scholar 

  29. Furzikov NP (1990) Appl Phys Lett 56:1638

    Article  CAS  Google Scholar 

  30. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon, Oxford

    Google Scholar 

  31. Von Allmen MF, Lau SS (1982) In: Poate JM, Mayer JW (eds) Laser annealing of semiconductors. Academic Press, New York

    Google Scholar 

  32. Ready JF (1971) Effects of high-power laser radiation. Academic Press, New York

    Google Scholar 

  33. Ozisik N (1993) Heat conduction. Wiley, New York

    Google Scholar 

  34. Yoo JH, Jeong SH, Greif R, Russo RE (2000) J Appl Phys 88:1638

    Article  CAS  Google Scholar 

  35. Kim JJ, Katz DJ (1987) United States Patent 4649002, Kennecott Corporation, Ohio

  36. Song Y, Smith FW (2002) Appl Phys Lett 81:3061

    Article  CAS  Google Scholar 

  37. Duanming Z, Dan L, Zhihua L, Li G, Xinyu T, Li L, Ranran F, Dezhi H, Gaobin L (2007) Appl Surf Sci 253:6144

    Article  Google Scholar 

  38. Dan L, Duanming Z (2008) Chin Phys Lett 25:1368

    Article  Google Scholar 

  39. Gorelik T, Urban S, Falk F, Kaiser U, Glatzel U (2003) Chem Phys Lett 373:642

    Article  CAS  Google Scholar 

  40. Savvatimskiy AI (2005) Carbon 43:1115

    Article  CAS  Google Scholar 

  41. Bauerle D (2000) Laser processing and chemistry. Springer-Verlag, Berlin, New York

    Google Scholar 

  42. Amoruso S (1999) Appl Phys A 69:314

    Article  Google Scholar 

  43. Neri F, Barreca F, Trusso S (2002) Diam Relat Mater 11:273

    Article  CAS  Google Scholar 

  44. Yoo JH, Jeong SH, Mao XL, Greif R, Russo RE (2000) Appl Phys Lett 76:783

    Article  CAS  Google Scholar 

  45. Craciun V, Bassim N, Singh RK, Craciun D, Hermann J, Boulmer-Leborgne C (2002) Appl Surf Sci 186:288

    Article  CAS  Google Scholar 

  46. Martynyuk MM (1974) Sov Phys Tech Phys 19:793

    Google Scholar 

  47. Martynyuk MM (1976) Sov Phys Tech Phys 21:430

    Google Scholar 

  48. Song KH, Xu X (1998) Appl Surf Sci 127–129:111

    Article  Google Scholar 

  49. Shanks HR, Maycock PD, Sidles PH, Danielson GC (1963) Phys Rev 130:1743

    Article  CAS  Google Scholar 

  50. Glassbrenner CJ, Slack GA (1964) Phys Rev 134:A1058

    Article  Google Scholar 

  51. Xing WH, Chen X (2003) J Phys D Appl Phys 36:2230

    Article  Google Scholar 

  52. Reid RC (1976) Am Sci 64:146

    CAS  Google Scholar 

  53. Carey VP (1992) Liquid–vapor phase phenomena. Hemisphere, Washington

    Google Scholar 

  54. Miotello A, Kelly R (1999) Appl Phys A 69:S67

    CAS  Google Scholar 

  55. Kelly R, Miotello A (1996) Appl Surf Sci 96–98:205

    Article  Google Scholar 

  56. Lu Q, Mao SS, Mao X, Russo RE (2002) Appl Phys Lett 80:3072

    Article  CAS  Google Scholar 

  57. Russo RE, Mao XL, Liu HC, Yoo JH, Mao SS (1999) Appl Phys A 69 Suppl:S887

    Article  Google Scholar 

  58. Bogaerts A, Chen ZY, Gizbels R, Vertes A (2003) Spectrochim Acta B 58:1867

    Article  Google Scholar 

  59. Chen ZY, Bogaerts A (2005) J Appl Phys 97:063305

    Article  Google Scholar 

  60. Lunney JG, Jordan R (1998) Appl Surf Sci 941:127

    Google Scholar 

  61. Islam MU, Mcgregor G, Campbell G (1992) United States Patent 5138130, National Research Council of Canada, California

  62. Koo JC, Slusher RE (1976) Appl Phys Lett 28:614

    Article  CAS  Google Scholar 

  63. Sipe JE, Young JF, Preston JS, Van Driel HM (1983) Phys Rev B 27:1155

    Article  Google Scholar 

  64. McCulloch DJ, Brotherton SD (1995) Appl Phys Lett 66:2060

    Article  CAS  Google Scholar 

  65. Dong Y, Molian P (2004) Appl Phys Lett 84:10

    Article  CAS  Google Scholar 

  66. Wu XJ, Jia TQ, Zhao FL, Huang M, Xu NS, Kuroda H, Xu ZZ (2007) Appl Phys A 86:491

    Article  CAS  Google Scholar 

  67. Bastow TJ (1969) Nature 222:1058

    Article  CAS  Google Scholar 

  68. Aussenegg FR, Leitner A, Lippitsch ME (1983) Surface studies with laser. Springer Series in Chemical Physics, Berlin, Springler

    Google Scholar 

  69. Thomas SJ, Harrison RF, Figueira JF (1982) Appl Phys Lett 40:200

    Article  CAS  Google Scholar 

  70. Caro RG, Gower MC (1982) J Quant Electron QE-18:1380

    Google Scholar 

  71. Ursu I, MihBilescu IN, Popa AL, Prokhorov AM, Ageev VP, Gorbunov AA, Konov VI (1985) J Appl Phys 58:3909

    Article  CAS  Google Scholar 

  72. Yu JJ, Lu YF (2000) Appl Surf Sci 154–155:670

    Article  Google Scholar 

  73. Giust GK, Simpson TW (1997) Appl Phys Lett 70:26

    Google Scholar 

Download references

Acknowledgements

This material is based in part upon work supported by the National Science Foundation under Grant Number CMMI-0619115. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Molian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Pecholt, B. & Molian, P. Excimer laser ablation of single crystal 4H-SiC and 6H-SiC wafers. J Mater Sci 46, 196–206 (2011). https://doi.org/10.1007/s10853-010-4920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4920-7

Keywords

Navigation