Skip to main content
Log in

Ablation and surface structuring of Si3N4 ceramics by nanosecond laser pulses

  • S.I. : EMRS 2022 - Symposium Q
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The work presents the main characteristics of the process of ablating silicon nitride ceramics by nanosecond laser pulses. Two types of ceramics are considered—tape cast and gas pressure sintered. Laser processing was performed by a Q-switched Nd:YAG laser system at four wavelengths—266 nm, 355 nm, 532 nm, and 1064 nm. The ablation depth dependences on the laser fluence and number of pulses applied at the different wavelengths are presented and discussed. It is found that increasing the laser fluence at a fixed number of pulses leads to a saturation of the ablation depth for all wavelengths used. Further, laser treatment results in a variety of micro- and nanostructures on the surface of the material. Their characteristics are determined as a function of the processing parameters. The ablation process proceeds via decomposition of the ceramic, as traces of silicon and silicon oxide are found in the processed area. The dependences observed are discussed based on a detailed analysis of the morphological and chemical changes estimated by classical analytical methods, namely, SEM, TEM, XRD, XPS, and Raman spectroscopy. The study presented can serve as a basis for the development of a laser-based processing technique for nitride ceramics and fabrication of Si-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.N. Grigoriev, Kh. Hamdy, M.A. Volosova, A.A. Okunkova, S.V. Fedorov, Mat. Design 209, 109965 (2021)

    Article  Google Scholar 

  2. Z. Krstic, V.D. Krstic, J. Mater. Sci. 47, 535 (2012)

    Article  ADS  Google Scholar 

  3. V. Onbattuvelli, S. Atre, Mat. Manufact. Proc. 26, 832 (2011)

    Article  Google Scholar 

  4. V. Bharathi, A.R. Anilchandra, Sh.S. Sangam, S. Shreyas, S.B. Shankar, Mat. Today Proc. 46, 1451 (2021)

    Article  Google Scholar 

  5. F.L. Riley, J. Am. Ceram. Soc. 83, 245 (2000)

    Article  Google Scholar 

  6. R.B. Heimann, Ceramics 4, 208 (2021)

    Article  Google Scholar 

  7. B.S. Bal, M.N. Rahaman, Acta Biomat. 8, 2889 (2012)

    Article  Google Scholar 

  8. K.M. Fox, J.R. Hellmann, Int. J. Appl. Ceram. Technol. 5, 138 (2008)

    Article  Google Scholar 

  9. Y. Kobayashi, E. Matsuo, T. Inagaki, T. Ozawa, SAE Paper 910401 (1991)

  10. M.H. Bocanegra-Bernal, B. Matovic, Mat. Sci. Engin. A 527, 1314 (2010)

    Article  Google Scholar 

  11. P. Gui-hua, L. Xiang-guo, L. Min, L. Zhen-hua, L. Quian, L. Wen-lan, Scr. Mater. 61, 347 (2009)

    Article  Google Scholar 

  12. Y. Tajima, In:, Silicon Nitride-Scientific and Technological Advances, ed. By I.W. Chen (MRS Symp. Proc. 287, MRS, Pittsburgh, USA, 1993), p. 189

  13. F. Riley, S.K. Biswas, F.L. Riley, Mat. Chem. Phys. 67, 175 (2001)

    Article  Google Scholar 

  14. S. Lei, Y.C. Shin, F.P. Incropera, J. Manufact. Sci. Eng. 123, 639 (2001)

    Article  Google Scholar 

  15. A.N. Samant, N.B. Dahotre, J. Manufact. Proc. 12, 1 (2010)

    Article  Google Scholar 

  16. B. Soltani, B. Azarhoushang, A. Zahedi, Opt. Laser Technol. 119, 105644 (2019)

    Article  Google Scholar 

  17. P. Shukla, J. Lawrence, Opt. Laser Technol. 54, 380 (2013)

    Article  ADS  Google Scholar 

  18. A.N. Samant, N.B. Dahotre, Adv. Eng. Mater. 11, 579 (2009)

    Article  Google Scholar 

  19. H.-J. Wang, Q. Chen, D.-T. Lin, F. Zuo, Z.-X. Zhao, C.-Y. Wang, H.-T. Lin, Ceram. Intern. 44, 14925 (2018)

    Article  Google Scholar 

  20. N.M. Shaikh, S. Hafeez, B. Rashid, M.A. Baiga, Eur. Phys. J. D 44, 371 (2007)

    Article  ADS  Google Scholar 

  21. K. Honda, Sh. Yokoyama, Sh. Tanaka, J. Appl. Phys. 85, 7380 (1999)

    Article  ADS  Google Scholar 

  22. N. Wada, S.A. Solin, J. Wong, S. Prochazka, J. Non-Crystalline Solids 43, 7 (1981)

    Article  ADS  Google Scholar 

  23. C. Smit, R.A.C.M.M. van Swaaij, H. Donker, A.M.H. Petit, W.M.M. Kessels, M.C.M. van de Sanden, J. Appl. Phys. 94, 3582 (2003)

    Article  ADS  Google Scholar 

  24. W.-E. Hong, J.-S. Ro, J. Appl. Phys. 114, 073511 (2013)

    Article  ADS  Google Scholar 

  25. P. Shukla, J. Lawrence, Opt. Lasers Eng. 49, 998 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bulgarian National Science Fund under project KP-06-H47/11. The support of the bilateral agreement between the Bulgarian and the Polish Academies of Sciences under project IC-PL/03/2022-2023 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nedyalkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedyalkov, N., Dikovska, A., Grochowska, K. et al. Ablation and surface structuring of Si3N4 ceramics by nanosecond laser pulses. Appl. Phys. A 128, 974 (2022). https://doi.org/10.1007/s00339-022-06119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06119-2

Keywords

Navigation