Skip to main content

Advertisement

Log in

Failure behavior of Cu–Ti–Zr-based bulk metallic glass alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructure fracture and mechanical properties of Cu-based bulk metallic glass alloys were investigated. Centrifugal casting into copper molds were used to manufacture basic Cu47Ti33Zr11Ni9, and modified Cu47Ti33Zr11Ni7Si1Sn1 alloys. Although the alloys show an amorphous structure, TEM images revealed the formation of nanoparticles. At room temperature compression tests reveal fracture strength of 2000 MPa, elastic modulus of 127 GPa, and 1.8% fracture strain for the unmodified basic alloy. Whereas the modified alloy exhibits a fracture strength of 2179 MPa, elastic modulus reaches 123 GPa, and 2.4% fracture strain. So, with the addition of 1 at.% Si and Sn, the fracture strength improves by 9% and the fracture strain improves by 25%, but the fracture behavior under compression conditions exhibits a conical shape similar to that produced by tensile testing of ductile alloys. A proposed fracture mechanism explaining the formation of the conical fracture surface was adopted. The formation of homogeneously distributed nano-size (2–5 nm) precipitates changes the mode of fracture of the metallic glass from single to multiple shear plane modes leading to the conical shape fracture surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang T, Inoue A, Masumoto T (1991) Mater Trans JIM 32(11):1005

    Article  CAS  Google Scholar 

  2. Inoue A (1998) Acta Mater 48(1):279

    Article  Google Scholar 

  3. Gilbert CG, Ritchie RO, Johnson WL (1997) Appl Phys Lett 71:476

    Article  CAS  Google Scholar 

  4. Conner D, Rosakis AJ, Johnson WL, Owen DM (1997) Scr Mater 37(9):1373

    Article  CAS  Google Scholar 

  5. Zhang QS, Zhang HF, Deng YF, Ding BZ, Hu ZQ (2003) Scr Mater 49(4):273

    Article  CAS  Google Scholar 

  6. El-Hadek MA, Kassem M (2008) Int J Mech Mater Des 4(3):279

    Article  CAS  Google Scholar 

  7. Hays CC, Kim CP, Johnson WL (2000) Phys Rev Lett 84(13):2901

    Article  CAS  Google Scholar 

  8. Glade SC, Löffler JF, Bossuyt S, Johnson W (2001) J Appl Phys 89:1573

    Article  CAS  Google Scholar 

  9. Bae DH, Lim HK, Kim SH, Kim DH, Kim WT (2002) Acta Mater 50(7):1749

    Article  CAS  Google Scholar 

  10. Schroers J (2007) Acta Mater 56(3):471

    Article  Google Scholar 

  11. Park ES, Lim HK, Kim WT, Kim DH (2002) J Non-Cryst Solids 298(1):15

    Article  CAS  Google Scholar 

  12. Choi-Yim H, Busch R, Johnson WL (1998) J Appl Phys 83(12):7993

    Article  CAS  Google Scholar 

  13. Spaepen F, Taub A (1983) Amorphous metallic alloys. Butterworth, London

    Google Scholar 

  14. Nishiyama N, Inoue A (1997) Mater Trans JIM 38(5):464

    Article  CAS  Google Scholar 

  15. Volkert CA, Lilleodden ET (2006) Phil Mag 86(33–35):5567

    Article  CAS  Google Scholar 

  16. El-Hadek MA, Kaytbay S (2008) Strain. doi:https://doi.org/10.1111/j.1475-1305.2008.00552.x

  17. Bruck HA, Christman T, Rosakis AJ, Johnson W (1994) Scr Metall Mater 30(4):429

    Article  CAS  Google Scholar 

  18. Scudino S, Surreddi KB, Sager S, Sakaliyska M, Kim JS, Löser W, Eckert J (2008) J Mater Sci 43(13):4518. doi:https://doi.org/10.1007/s10853-008-2647-5

    Article  CAS  Google Scholar 

  19. Bhowmick R, Majumdar B, Misra DK, Ramamurty U, Chattopadhyay K (2007) J Mater Sci 42(22):9359. doi:https://doi.org/10.1007/s10853-007-1856-7

    Article  CAS  Google Scholar 

  20. Donovan PE (1988) Mater Sci Eng 98:487

    Article  CAS  Google Scholar 

  21. Lowhaphandu P, Montgomery SL, Lewandowski JJ (1999) Scr Mater 41(1):19

    Article  CAS  Google Scholar 

  22. Wright WJ, Saha R, Nix WD (2001) Mater Trans JIM 42:642

    Article  CAS  Google Scholar 

  23. Wright WJ, Hufnagel TC, Nix WD (2003) J Appl Phys 93(3):1432

    Article  CAS  Google Scholar 

  24. Donovan PE (1989) Acta Mater 37:445

    Article  CAS  Google Scholar 

  25. Chen D, Takeuchi A, Inoue A (2007) J Mater Sci 42(20):8662. doi:https://doi.org/10.1007/s10853-007-1830-4

    Article  CAS  Google Scholar 

  26. Zhang ZF, Eckert J, Schultz L (2003) Acta Mater 51(4):1167

    Article  CAS  Google Scholar 

  27. Liu CT, Heatherly L, Easton DS, Carmichael CA, Schneibel JH, Chen CH (1998) Metall Mater Trans A 29(7):1811

    Article  Google Scholar 

  28. Qiu K, Hao DZ, Ren YL, Zhang H (2007) J Mater Sci 42(9):3223. doi:https://doi.org/10.1007/s10853-006-0238-x

    Article  CAS  Google Scholar 

  29. Bian Z, He G, Chen GL (2002) Scr Mater 46(6):407

    Article  CAS  Google Scholar 

  30. Kim HS, Bush MB, Esstrin Y (2000) Acta Mater 48(2):493

    Article  CAS  Google Scholar 

  31. Palmqvist S (1963) Jernkontoreets Ann 147:107

    Google Scholar 

  32. Chen H, He Y, Shiflet GJ, Poon SJ (1994) Nature 367:541

    Article  CAS  Google Scholar 

  33. He Y, Shiflet GJ, Poon SJ (1995) Acta Mater 43(1):83

    Article  CAS  Google Scholar 

  34. Gao MC, Hackenberg RE, Shiflet GJ (2003) Appl Phys Lett 83(13):2575

    Article  Google Scholar 

  35. Leamy HJ, Wang TT, Chen HS (1972) Metall Mater Trans B 3(3):699

    Article  CAS  Google Scholar 

  36. Calin M, Eckert J, Schultz L (2003) Scr Mater 48(6):653

    Article  CAS  Google Scholar 

  37. Bian Z, Chen GL, He G, Hui XD (2001) Mater Sci Eng A 316(1–2):135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat Awad El-Hadek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hadek, M.A., Kassem, M. Failure behavior of Cu–Ti–Zr-based bulk metallic glass alloys. J Mater Sci 44, 1127–1136 (2009). https://doi.org/10.1007/s10853-008-3194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3194-9

Keywords

Navigation