Skip to main content
Log in

Plastic flow and fracture of metallic glass

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The tensile flow and fracture behavior of three Pdo.8Sio2-based alloys in the glassy, “microcrystalline,” and fully crystalline condition has been studied. The glassy alloys flow plastically to a total strain of approximately 0.5 pct e, and exhibit proportional limit stresses of approximatelyE x 10~2 whereE is Young’s modulus. This plastic flow is accompanied by the formation of shear deformation bands on the specimen surfaces. Fully crystalline alloys are extremely brittle and fracture via intergranular cracking. Fracture surfaces of the amorphous and “microcrystalline” alloys are inclined at 45 deg to the tensile axis and exhibit two morphologically distinct zones. One zone is relatively featureless while the other contains a “river” pattern of local necking protrusions. Detailed comparison of opposing surfaces indicates that fracture is preceded by large local plastic shear which produces the smooth zone while the local necking pattern is produced during rupture. These observations form the basis for the hypothesis that plastic flow in the glassy material occurs via localized strain concentrations and that fracture is initiated by catastrophic, “adiabatic” shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement, R. H. Willens, and P. Duwez:Nature (London), 1960, vol. 187, p. 869.

    Article  Google Scholar 

  2. H. S. Chen and D. Turnbull.Acta Met., 1969, vol. 17, p. 1021.

    Article  Google Scholar 

  3. H. S. Chen: unpublished research, Allied Chemical Corporation Research Laboratories, Morristown, N. J., 1970.

  4. P. Duwez:Trans. ASM, 1967, vol. 60, p. 605.

    Google Scholar 

  5. H. S. Chen and T. T. Wang:J. Appl. Phys., 1970, vol. 41, p. 5338.

    Article  Google Scholar 

  6. H. S. Chen, H. J. Leamy, and M. Barmatz:J. Noncryst. Solids, 1971, vol. 5, p. 444.

    Article  Google Scholar 

  7. T. Masumoto and R. Maddin:Acta Met, 1971, vol. 19, p. 725.

    Article  Google Scholar 

  8. G. S. Cargill:J. Appl. Phys., 1970, vol. 41, pp. 12 and 2248.

    Article  Google Scholar 

  9. J. D. Bernai: inLiquids: Structure, Properties, and Solid Interactions, T. J. Hughel, ed., p. 25, Elsevier Publishing Company, Amsterdam, 1965.

    Google Scholar 

  10. H. S. Chen and E. Miller:Rev. Sci. Instrum., 1970, vol. 41, p. 1237.

    Article  Google Scholar 

  11. M. F. Ashby, A. N. Nelson, and R. M. A. Centamore:Scripta Met., 1970, vol. 4, p. 715.

    Article  Google Scholar 

  12. D. Weaire, M. F. Ashby, J. Logan, and M. J. Weins:Acta Met, 1971, vol. 19, p. 779.

    Article  Google Scholar 

  13. D. M. Marsh:Proa Roy. Soc., London, 1964, vol. A279, p. 420.

    Article  Google Scholar 

  14. J. D. Mackenzie and R. P. LaForce:Nature, London, 1963, vol. 197, p. 480.

    Article  Google Scholar 

  15. J. R. Low, Jr.: inFracture of Solids, D. C. Drucker and J. J. Gilman, eds., pp.197–236, Interscience Publishers, New York, 1963.

    Google Scholar 

  16. R. M. N. Pelloux:Eng. Fracture Mech, 1970, vol. 1, p. 697.

    Article  Google Scholar 

  17. C. Crussard, J. Plateau, R. Tamhankar, G. Henry, and D. Lajeunesse: inFrac ture, B. L. Averbach, D. K. Felbeck, G. T. Hahn, and D. A. Thomas, eds., p. 52.1, John Wiley and Sons, Inc., New York, 1959.

    Google Scholar 

  18. D. Beachem and R. M. N. Pelloux:Amer. Soc. Test Mater., Spec. Tech. Publ, 1964, No. 381, pp. 210, 245.

  19. J. Murray and D. Hull:J. Polymer Sci., 1970, vol. 8, part A-2, p. 583.

    Article  Google Scholar 

  20. Z. S. Basinski:Proc. Roy. Soc, London, Ser. A, 1957, vol. 240, p. 229.

    Article  Google Scholar 

  21. G. Y. Chin, W. F. Hosford, Jr., and W. A. Backofen:Trans. TMS-AIME, 1964, vol. 230, p. 1043.

    Google Scholar 

  22. R. F. Recht:J. Appl. Mech., 1964, vol. 31, p. 189.

    Article  Google Scholar 

  23. A. H. Cottrell:Dislocations and Plastic Flow in Crystals, Oxford University Press, London, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Postdoctoral Associate, Yeshiva University, New York, N. Y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leamy, H.J., Wang, T.T. & Chen, H.S. Plastic flow and fracture of metallic glass. Metall Trans 3, 699–708 (1972). https://doi.org/10.1007/BF02642754

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642754

Keywords

Navigation