Skip to main content

Advertisement

Log in

Enhanced Plasticity of Cu-Zr-Ti Bulk Metallic Glass and Its Correlation with Fragility

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Inadequate room-temperature plasticity limits the application of bulk metallic glasses (BMGs). This study focuses on enhancing the plasticity of BMGs for widening their applications. Composition modification of Cu60Zr25Ti15 through the minor addition of Ni is the approach adopted in this study. A systematic increase in mechanical properties is observed with increasing Ni content (up to 5 at. pct), followed by a decrease thereafter. Values of yield stress (2425 MPa), fracture stress (2513 MPa), maximum stress (2725 MPa), and plastic strain (16 pct) exhibited by (Cu60Zr25Ti15)95Ni5 BMGs are higher than those reported in the literature for Cu-BMGs (high Cu content). Analysis of the glass transition region indicated that the enthalpy values of the exothermic heat flow prior to glass transition (ΔHbg) and the fragility parameter (m) are well correlated with the plasticity of the alloys. The increasing fragility parameter and exothermic enthalpy correspond to higher free volume. Therefore, high plasticity values can be attributed to the free volume modification (creation and distribution) caused by Ni addition. This free volume modification initiates shear bands and promotes their branching; consequent interactions among them increase the resistance to shear band propagation and, thereby, delay the fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. J.W. Qiao, H.L. Jia, C.P. Chuang, E.W. Huang, G.Y. Wang, P.K. Liaw, Y. Ren, and Y. Zhang: Scripta Mater., 2010, vol. 63, pp. 871–74.

    Article  CAS  Google Scholar 

  2. C.L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang, and A. Inoue: Acta Mater., 2006, vol. 54, pp. 3713–19.

    Article  CAS  Google Scholar 

  3. P. Jinhong, Y. Pan, J. Wu, and H. Xiancong: Rare Met. Mater. Eng., 2014, vol. 43, pp. 32–35.

    Article  Google Scholar 

  4. M.L. Lee, Y. Li, and C.A. Schuh: Acta Mater., 2004, vol. 52, pp. 4121–31.

    Article  CAS  Google Scholar 

  5. K.B. Kim, J. Das, F. Baier, M.B. Tang, W.H. Wang, and J. Eckert: Appl. Phys. Lett., 2006, vol. 88, pp. 051911–051913.

    Article  Google Scholar 

  6. S.W. Lee, M.Y. Huh, E. Fleury, and J.C. Lee: Acta Mater., 2006, vol. 54, pp. 349–55.

    Article  CAS  Google Scholar 

  7. J. Pan, K.C. Chan, Q. Chen, N. Li, S.F. Guo, and L. Liu: J. Alloys Compd., 2010, vol. 504, pp. S74–S77.

    Article  Google Scholar 

  8. J. Gu, M. Song, S. Ni, S. Guo, and Y. He: Mater. Des., 2013, vol. 47, pp. 706–10.

    Article  CAS  Google Scholar 

  9. Y. Zhao, S. Kou, H. Suo, R. Wang, and Y. Ding: Mater. Des., 2010, vol. 31, pp. 1029–32.

    Article  Google Scholar 

  10. X. Ji, Y. Pan, and F. Ni: Mater. Des., 2009, vol. 30, pp. 842–45.

    Article  CAS  Google Scholar 

  11. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: Acta Mater., 2001, vol. 49, pp. 2645–52.

    Article  CAS  Google Scholar 

  12. A. Inoue and W. Zhang: Mater. Trans., 2002, vol. 43, pp. 2921–25.

    Article  CAS  Google Scholar 

  13. W. Zhang and A. Inoue: Mater. Trans., 2003, vol. 44, pp. 2220–23.

    Article  CAS  Google Scholar 

  14. Y. Pan, Y. Zeng, L. Jing, L. Zhang, and J. Pi: Mater. Des., 2014, vol. 55, pp. 773–77.

    Article  CAS  Google Scholar 

  15. A. Caron, R. Wunderlich, D.V. Louzguine-Luzgin, G. Xie, A. Inoue, and H.-J. Fecht: Acta Mater., 2010, vol. 58, pp. 2004–13.

    Article  CAS  Google Scholar 

  16. N. Zheng, R.T. Qu, S. Pauly, M. Calin, T. Gemming, Z.F. Zhang, and J. Eckert: Appl. Phys. Lett., 2012, vol. 100, pp. 1419011–1419014.

    Google Scholar 

  17. L.Y. Chen, Z.D. Fu, G.Q. Zhang, X.P. Hao, Q.K. Jiang, X.D. Wang, Q.P. Cao, H. Franz, Y.G. Liu, H.S. Xie, and S.L. Zhang: Phys. Rev. Lett., 2008, vol. 100, pp. 0755011–0755014.

    Google Scholar 

  18. Z. Liu, R. Li, G. Liu, W. Su, H. Wang, Y. Li, M. Shi, X. Luo, G. Wu, and T. Zhang: Acta Mater., 2012, vol. 60, pp. 3128–39.

    Article  CAS  Google Scholar 

  19. Z.Y. Suo, K.Q. Qiu, Q.F. Li, Y.L. Ren, and Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2486–91.

    Article  Google Scholar 

  20. J. Wu, Y. Pan, X. Li, and X. Wang: Mater. Des., 2014, vol. 57, pp. 175–79.

    Article  CAS  Google Scholar 

  21. J. Wu, Y. Pan, X. Li, and X. Wang: Mater. Sci. Eng. A, 2014, vol. 608, pp. 16–20.

    Article  CAS  Google Scholar 

  22. G.Z. Ma, B.A. Sun, S. Pauly, K.K. Song, U. Kühn, D. Chen, and J. Eckert: Mater. Sci. Eng. A, 2013, vol. 563, pp. 112–16.

    Article  CAS  Google Scholar 

  23. W. Zhou, L.T. Kong, J.F. Li, and Y.H. Zhou: J. Mater. Sci., 2012, vol. 47, pp. 4996–5001.

    Article  CAS  Google Scholar 

  24. Y.H. Liu, G. Wang, R.J. Wang, M.X. Pan, and W.H. Wang: Science, 2007, vol. 315, pp. 1385–88.

    Article  CAS  Google Scholar 

  25. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–29.

    Article  CAS  Google Scholar 

  26. CRC Handbook of Chemistry and Physics, 84th ed., D.R. Lide, ed., CRC Press, Boca Raton, FL, 2003; Section 6, Fluid Properties, Enthalpy of Fusion.

  27. A.J. Kailath and S. Mandal: Ind. Pat. Off. J., 2016, 2851DEL2014.

  28. J. Hu, B.A. Sun, Y. Yang, C.T. Liu, S. Pauly, Y.X. Weng, and J. Eckert: Intermetallics, 2015, vol. 66, pp. 31–39.

    Article  CAS  Google Scholar 

  29. C.N. Kuo, H.M. Chen, X.H. Du, and J.C. Huang: Intermetallics, 2010, vol. 18, pp. 1648–52.

    Article  CAS  Google Scholar 

  30. S.Y. Jiang, M.Q. Jiang, L.H. Dai, and Y.G. Yao: Nano. Res. Lett., 2008, vol. 3, pp. 524–29.

    Article  CAS  Google Scholar 

  31. D. Klaumünzer, R. Maaß, and J.F. Löffler: J. Mater. Res., 2011, vol. 26, pp. 1453–63.

    Article  Google Scholar 

  32. S.X. Song, H. Bei, J. Wadsworth, and T.G. Nieh: Intermetallics, 2008, vol. 16, pp. 813–18.

    Article  CAS  Google Scholar 

  33. B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, and W.H. Wang: Phys. Rev. Lett., 2010, vol. 105, pp. 0355011–03550114.

    Google Scholar 

  34. E.S. Park, H.J. Chang, D.H. Kim, T. Ohkubo, and K. Hono: Scripta Mater., 2006, vol. 54, pp. 1569–73.

    Article  CAS  Google Scholar 

  35. Y.C. Kim, J.C. Lee, D.H. Kim, and E. Fleury: U.S. Patent US7591916 B2, 2009.

  36. C.L. Dai, J.W. Deng, Z.X. Zhang, and J. Xu: J. Mater. Res., 2008, vol. 23, pp. 1249–57.

    Article  CAS  Google Scholar 

  37. Z.F. Zhang, G. He, J. Eckert, and L. Schultz: Phys. Rev. Lett., 2003, vol. 91, pp. 0455051–0455054.

    Google Scholar 

  38. G. He, Z.F. Zhang, W. Löser, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 2383–95.

    Article  CAS  Google Scholar 

  39. Y.F. Sun, S.K. Guan, B.C. Wei, Y.R. Wang, and C.H. Shek: Mater. Sci. Eng. A, 2005, vol. 406, pp. 57–62.

    Article  Google Scholar 

  40. M. Kusy, U. Kühn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz, and M.D. Baro: Intermetallics, 2006, vol. 14, pp. 982–86.

    Article  CAS  Google Scholar 

  41. Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.

    Article  CAS  Google Scholar 

  42. C.A. Pampillo: J. Mater. Sci., 1975, vol. 10, pp. 1194–1227.

    Article  CAS  Google Scholar 

  43. G. Subhash, R.J. Dowding, and L.J. Kecskes: Mater. Sci. Eng. A, 2002, vol. 334, pp. 33–40.

    Article  Google Scholar 

  44. H.A. Bruck, A.J. Rosakis, and W.L. Johnson: J. Mater. Res., 1996, vol. 11, pp. 503–11.

    Article  CAS  Google Scholar 

  45. C.T. Liu, L. Heatherly, J.A. Horton, D.S. Easton, C.A. Carmichael, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.

    Article  CAS  Google Scholar 

  46. H.J. Leamy, T.T. Wang, and H.S. Chen: Metall. Trans., 1972, vol. 3, pp. 699–708.

    Article  CAS  Google Scholar 

  47. R.D. Conner, H. Choi-Yim, and W.L. Johnson: J. Mater. Res., 1999, vol. 14, pp. 3292–97.

    Article  CAS  Google Scholar 

  48. M. Chen, A. Inoue, W. Zhang, and T. Sakurai: Phys. Rev. Lett., 2006, vol. 96, pp. 2455021–2455024.

    Google Scholar 

  49. T.C. Hufnagel, C. Fan, R.T. Ott, J. Li, and S. Brennan: Intermetallics, 2002, vol. 10, pp. 1163–66.

    Article  CAS  Google Scholar 

  50. M. Sun, L. Liu, J. Wang, and B. Liu: Acta Metall. Sinica (China), 2005, vol. 41, pp. 534–38.

    CAS  Google Scholar 

  51. D. Turnbull and M.H. Cohen: J. Chem. Phys., 1970, vol. 52, pp. 3038–41.

    Article  Google Scholar 

  52. F. Spaepen: Acta Metall., 1977, vol. 25, pp. 407–15.

    Article  CAS  Google Scholar 

  53. P.S. Steif, F. Spaepen, and J.W. Hutchinson: Acta Metall., 1982, vol. 30, pp. 447–55.

    Article  CAS  Google Scholar 

  54. A. Slipenyuk and J. Eckert: Scripta Mater., 2004, vol. 50, pp. 39–44.

    Article  CAS  Google Scholar 

  55. C.A. Angell: Science, 1995, vol. 267, pp. 1924–35.

    Article  CAS  Google Scholar 

  56. C.A. Angell: Strong and Fragile Liquids, 1985, vol. 3, pp. 3–11.

    Google Scholar 

  57. A.S. Argon: Acta Metall., 1979, vol. 27, pp. 47–58.

    Article  CAS  Google Scholar 

  58. W.K. An, A.H. Cai, X. Xiong, Y. Liu, G.J. Zhou, Y. Luo, T.L. Li, and X.S. Li: Mater. Sci. Eng. A, 2013, vol. 564, pp. 442–49.

    Article  CAS  Google Scholar 

  59. M.M. Trexler and N.N. Thadhani: Progr. Mater. Sci., 2010, vol. 55, pp. 759–839.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the CSIR-NML (OLP-203) is greatly acknowledged. The help received from Ms. Siuli (CSIR-NML) with the SEM micrographs is also acknowledged. One of the authors (SM) acknowledges the research fellowship received from MHRD, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansu J Kailath.

Additional information

Manuscript submitted June 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Kailath, A.J. Enhanced Plasticity of Cu-Zr-Ti Bulk Metallic Glass and Its Correlation with Fragility. Metall Mater Trans A 50, 199–208 (2019). https://doi.org/10.1007/s11661-018-4980-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4980-x

Navigation