Skip to main content
Log in

A Tutorial on Well-Composedness

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Due to digitization, usual discrete signals generally present topological paradoxes, such as the connectivity paradoxes of Rosenfeld. To get rid of those paradoxes, and to restore some topological properties to the objects contained in the image, like manifoldness, Latecki proposed a new class of images, called well-composed images, with no topological issues. Furthermore, well-composed images have some other interesting properties: for example, the Euler number is locally computable, boundaries of objects separate background from foreground, the tree of shapes is well defined. Last, but not the least, some recent works in mathematical morphology have shown that very nice practical results can be obtained thanks to well-composed images. Believing in its prime importance in digital topology, we then propose this state of the art of well-composedness, summarizing its different flavors, the different methods existing to produce well-composed signals, and the various topics that are related to well-composedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82

Similar content being viewed by others

Notes

  1. A topological space is said to be unicoherent iff it is connected and for any two closed connected sets such that their union equals the whole space, their intersection is also connected.

References

  1. Al Faqheri, W., Mashohor, S.: A real-time Malaysian automatic license plate recognition (M-ALPR) using hybrid fuzzy. IJCSNS Int. J. Comput. Sci. Netw. Secur. 9(2), 333–340 (2009)

    Google Scholar 

  2. Aleksandrov, P.S.: Combinatorial Topology, vol. 1. Courier Corporation, North Chelmsford (1956)

    Google Scholar 

  3. Alexander, J.W.: A proof and extension of the Jordan–Brouwer separation theorem. Trans. Am. Math. Soc. 23(4), 333–349 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandroff, P., Hopf, H.: Topologie I: Erster Band. Grundbegriffe der Mengentheoretischen, Topologie ,Topologie der Komplexe. Topologische Invarianzsätze und Anschliessende Begriffsbildungen. Verschlingungen im n-Dimensionalen Euklidischen Raum Stetige Abbildungen von Polyedern. Springer (2013)

  5. Alexandrov, O., Santosa, F.: A topology-preserving level set method for shape optimization. J. Comput. Phys. 204(1), 121–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alexandrov, P.S.Ã.: Diskrete RÃd’ume. Matematicheskij Sbornik 2(44), 501–519 (1937)

    Google Scholar 

  7. Arcelli, C.: Pattern thinning by contour tracing. Comput. Graph. Image Process. 17(2), 130–144 (1981)

    Article  Google Scholar 

  8. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  9. Ballester, C., Caselles, V., Monasse, P.: The tree of shapes of an image. ESAIM: Control Optim. Calc. Var. 9, 1–18 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bazin, P.-L., Ellingsen, L.M., Pham, D.L.: Digital homeomorphisms in deformable registration. In: International Conference on Information Processing in Medical Imaging. Springer, pp. 211–222 (2007)

  11. Bazin, P.-L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. Med. Imaging 26(4), 487–496 (2007)

    Article  Google Scholar 

  12. Berg, G.O., Julian, W.H., Mines, R., Richman, F.: The constructive Jordan curve theorem. Rocky Mt. J. Math. 5(2), 225–236 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recogn. Lett. 15(10), 1003–1011 (1994)

    Article  Google Scholar 

  14. Bertrand, G.: A Boolean characterization of three-dimensional simple points. Pattern Recogn. Lett. 17(2), 115–124 (1996)

    Article  Google Scholar 

  15. Bertrand, G.: New notions for discrete topology. In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 1568, pp. 218–228. Springer (1999)

  16. Bertrand, G.: On topological watersheds. J. Math. Imaging Vis. 22(2–3), 217–230 (2005)

    Article  MathSciNet  Google Scholar 

  17. Bertrand, G., Everat, J.-C., Couprie, M.: Topological approach to image segmentation. In: SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, pp. 65–76. International Society for Optics and Photonics (1996)

  18. Bertrand, G., Everat, J.-C., Couprie, M.: Image segmentation through operators based on topology. J. Electron. Imaging 6(4), 395–405 (1997)

    Article  Google Scholar 

  19. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recogn. Lett. 15(2), 169–175 (1994)

    Article  MATH  Google Scholar 

  20. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. Real-time Edge and Motion Detection/Estimation, International Workshop on Image Processing (1979)

  21. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Opt. Eng. N. Y. Marcel Dekker Inc. 34, 433–433 (1992)

    Google Scholar 

  22. Bieri, H., Nef, W.: Algorithms for the Euler characteristic and related additive functionals of digital objects. Comput. Vis. Graph. Image Process. 28(2), 166–175 (1984)

    Article  MATH  Google Scholar 

  23. Bishop, E., Bridges, D.S.: Constructive Analysis, vol. 279. Springer, Berlin (2012)

    MATH  Google Scholar 

  24. Bloch, E.D.: A First Course in Geometric Topology and Differential Geometry. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  25. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–944. Springer (2007)

  26. Boutry, N.: A study of well-composedness in \(n-\text{D}\). PhD thesis, Université Paris-Est, France (2016)

  27. Boutry, N., Géraud, T., Najman, L.: On making \(n\)D images well-composed by a self-dual local interpolation. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) Discrete Geometry for Computer Imagery—Proceedings of the 18th International Conference on Discrete Geometry for Computer Imagery (DGCI), volume 8668 of Lecture Notes in Computer Science, pp. 320–331, Siena, Italy, September 2014. Springer (2014)

  28. Boutry, N., Géraud, T., Najman, L.: How to make images well-composed in \(n\text{ D }\) without interpolation. In: Proceedings of the 22nd IEEE International Conference on Image Processing (ICIP), pp. 2149–2153, Québec City, Canada (2015)

  29. Boutry, N., Géraud, T., Najman, L.: How to make \(n-\text{ D }\) functions digitally well-composed in a self-dual way. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing – Proceedings of the 12th International Symposium on Mathematical Morphology (ISMM), volume 9082 of Lecture Notes in Computer Science, pp. 561–572, Reykjavik, Iceland. Springer (2015)

  30. Braquelaire, J.-P., Brun, L.: Image segmentation with topological maps and inter-pixel representation. J. Vis. Commun. Image Represent. 9(1), 62–79 (1998)

    Article  Google Scholar 

  31. Busta, M., Neumann, L., Matas, J.: Fastext: Efficient unconstrained scene text detector. In: IEEE International Conference on Computer Vision, pp. 1206–1214. IEEE (2015)

  32. Caissard, T., Coeurjolly, D., Lachaud, J.-O., Roussillon, T.: Heat kernel Laplace-Beltrami operator on digital surfaces. In: International Conference on Discrete Geometry for Computer Imagery, pp. 241–253. Springer (2017)

  33. Caselles, V., Monasse, P.: Grain filters. J. Math. Imaging Vis. 17(3), 249–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Caselles, V., Monasse, P.: Geometric description of images as topographic maps, ser. Lecture Notes in Mathematics. Springer, 1984 (2009)

  35. Cecil, T.C.: Numerical methods for partial differential equations involving discontinuities. PhD thesis, University of California Los Angeles (2003)

  36. Chen, L.: Genus computing for 3D digital objects: Algorithm and implementation. arXiv preprint arXiv:0912.4936 (2009)

  37. Chen, L.: Algorithms for computing topological invariants in 2D and 3D digital spaces. arXiv preprint arXiv:1309.4109 (2013)

  38. Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B., Wang, T., Wu, D.J., Ng, A.Y.: Text detection and character recognition in scene images with unsupervised feature learning. In: International Conference on Document Analysis and Recognition, pp. 440–445. IEEE (2011)

  39. Cousty, J., Bertrand, G.: Uniqueness of the perfect fusion grid on \(\mathbb{Z}^d\). J. Math. Imaging Vis. 34(3), 291–306 (2009)

    Article  MathSciNet  Google Scholar 

  40. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Fusion graphs: merging properties and watersheds. J. Math. Imaging Vis. 30(1), 87–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cousty, J., Couprie, M., Najman, L., Bertrand, G.: Grayscale watersheds on perfect fusion graphs. In: International Workshop on Combinatorial Image Analysis, pp. 60–73. Springer (2006)

  42. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes of \(n\text{ D }\) images. In: Proceedings of the 21st IEEE International Conference on Image Processing (ICIP), pp. 2933–2937, Paris, France (2014)

  43. Daragon, X.: Surfaces discrètes et frontières d’objets dans les ordres. PhD thesis, Université de Marne-la-Vallée (2005)

  44. Daragon, X., Couprie, M., Bertrand, G.: Marching chains algorithm for Alexandroff–Khalimsky spaces. In: International Symposium on Optical Science and Technology, pp. 51–62. International Society for Optics and Photonics (2002)

  45. Daragon, X., Couprie, M., Bertrand, G.: Discrete surfaces and frontier orders. J. Math. Imaging Vis. 23(3), 379–399 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators in nd. preprint, the Caltech Multi-Res Modeling Group (2000)

  47. Deseilligny, M.P., Stamon, G., Suen, C.Y.: Veinerization: a new shape description for flexible skeletonization. IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 505–521 (1998)

    Article  Google Scholar 

  48. Dey, T.K., Guha, S.: Computing homology groups of simplicial complexes in \(\mathbb{R}^3\). J. ACM 45(2), 266–287 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Diaz-deLeon, J.L., SossaAzuela, J.H.: On the computation of the Euler number of a binary object. Pattern Recogn. 29(3), 471–476 (1996)

    Article  Google Scholar 

  50. Duda, R.O., Munson, J.H.: Graphical-data-processing research study and experimental investigation. Technical report, DTIC Document (1967)

  51. Dyer, C.R.: Computing the Euler number of an image from its quadtree. Comput. Graph. Image Process. 13(3), 270–276 (1980)

    Article  Google Scholar 

  52. Eckhardt, U., Latecki, L.J.: Digital Topology. Institut für Angewandte Mathematik (1994)

  53. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pp. 454–463. IEEE (2000)

  54. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2963–2970. IEEE (2010)

  55. Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fabrizio, J., Robert-Seidowsky, M., Dubuisson, S., Calarasanu, S., Boissel, R.: Textcatcher: a method to detect curved and challenging text in natural scenes. Int. J. Doc. Anal. Recogn. 19(2), 99–117 (2016)

    Article  Google Scholar 

  57. Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3D binary images according to continuous one-to-one mappings. IEEE Trans. Image Process. 20(8), 2135–2145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Fedorov, E.S.: Course of Crystallography. Published by RK Rikker, Saint-Petersburg (1901). (in Russian)

    Google Scholar 

  59. Fiorio, C.: Approche interpixel en analyse dâǍŹimages, une topologie et des algorithmes de segmentation. PhD thesis, Technische Universität Wien (1995)

  60. Fiorio, C.: A topologically consistent representation for image analysis: the frontiers topological graph. In: Discrete Geometry for Computer Imagery, pp. 151–162. Springer (1996)

  61. Forman, R.: A discrete Morse theory for cell complexes. In: Geometry, Topology 6 Physics for Raoul Bott. Citeseer (1995)

  62. Géraud, T., Carlinet, E., Crozet, S.: Self-duality and discrete topology: links between the morphological tree of shapes and well-composed gray-level images. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing—Proceedings of the 12th International Symposium on Mathematical Morphology (ISMM), volume 9082 of Lecture Notes in Computer Science, pp. 573–584, Reykjavik, Iceland. Springer (2015)

  63. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of \(n-\text{ D }\) images. In: Hendriks, C.L. Luengo, Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing—Proceedings of the 11th International Symposium on Mathematical Morphology (ISMM), volume 7883 of Lecture Notes in Computer Science, pp. 98–110, Uppsala, Sweden. Springer (2013)

  64. Géraud, T., Xu, Y., Carlinet, E., Boutry, N.: Introducing the Dahu pseudo-distance. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing—Proceedings of the 13th International Symposium on Mathematical Morphology (ISMM), volume 10225 of Lecture Notes in Computer Science, pp. 55–67, Fontainebleau, France. Springer (2017)

  65. González-Díaz, R., Jiménez, M.J., Medrano, B.: Cohomology ring of 3D cubical complexes. In: IWCIA Special Track on Applications, pp. 139–150 (2009)

  66. González-Díaz, R., Jiménez, M.J., Medrano, B.: Cubical cohomology ring of 3D photographs. Int. J. Imaging Syst. Technol. 21(1), 76–85 (2011)

    Article  Google Scholar 

  67. González-Díaz, R., Jiménez, M.J., Medrano, B.: Well-composed cell complexes. In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 6607, pp. 153–162. Springer (2011)

  68. González-Díaz, R., Jiménez, M.J., Medrano, B.: 3D well-composed polyhedral complexes. Discrete Appl. Math. 183, 59–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. González-Díaz, R., Jiménez, M.J., Medrano, B.: Encoding specific 3D polyhedral complexes using 3D binary images. In: Discrete Geometry for Computer Imagery, pp. 268–281. Springer (2016)

  70. González-Díaz, R., Lamar, J., Umble, R.: Cup products on polyhedral approximations of 3D digital images. In: International Workshop on Combinatorial Image Analysis, pp. 107–119. Springer (2011)

  71. González-Díaz, R., Real, P.: Towards digital cohomology. In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 2886, pp. 92–101. Springer (2003)

  72. González-Díaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Appl. Math. 147(2), 245–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  73. Grady, L.J., Polimeni, J.R.: Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  74. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 100(5), 551–561 (1971)

    Article  MATH  Google Scholar 

  75. Greenberg, M.J.: Lectures on Algebraic Topology, vol. 9. W A Benjamin, New York (1967)

    MATH  Google Scholar 

  76. Gross, A., Latecki, L.J.: Digitizations preserving topological and differential geometric properties. Comput. Vis. Image Underst. 62(3), 370–381 (1995)

    Article  Google Scholar 

  77. Han, X., Xu, C., Prince, J.L.: A topology preserving deformable model using level sets. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 765–770. IEEE (2001)

  78. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  79. Heijmans, H.: Theoretical aspects of gray-level morphology. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 568–582 (1991)

    Article  Google Scholar 

  80. Heijmans, H.: Morphological Image Operators. Advances in Electronics and Electron Physics, vol. 25, pp. 198–202. Academic Press (1994)

  81. Huỳnh, L.D., Xu, Y., Géraud, T.: Morphology-based hierarchical representation with application to text segmentation in natural images. In: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), pp. 4029–4034, Cancun, Mexico. IEEE Computer Society (2016)

  82. Janos, L., Rosenfeld, A.: Digital connectedness: an algebraic approach. Pattern Recogn. Lett. 1(3), 135–139 (1983)

    Article  MATH  Google Scholar 

  83. Jordan, C.: Cours d’Analyse de l’Ecole Polytechnique, vol. 3. Gauthier-Villars, Paris (1887)

    MATH  Google Scholar 

  84. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of Hermite data. ACM Trans. Graph. 21(3), 339–346 (2002)

    Article  Google Scholar 

  85. Kelley, J.L.: General topology. The university series in higher mathematics (1955)

  86. Khalimsky, E.: Applications of connected ordered topological spaces in topology. Conference of Math, Department of Povolosia (1970)

  87. Khalimsky, E.: Ordered topological spaces. Naukova Dumka Press, Kiev (1977)

    MATH  Google Scholar 

  88. Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36(1), 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  89. Kirby, R.M., Pascucci, V., Silva, C.T., Peters, T.J., Tierny, J., Scheidegger, C., Nonato, L.G., Etiene, T.: Topology verification for isosurface extraction. IEEE Trans. Vis. Comput. Graph. 18(6), 952–965 (2012)

    Article  Google Scholar 

  90. Kong, Y.T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  91. Kong, Y.T., Rosenfeld, A.: If we use 4-or 8-connectedness for both the objects and the background, the Euler characteristics is not locally computable. Pattern Recogn. Lett. 11(4), 231–232 (1990)

    Article  MATH  Google Scholar 

  92. Kopperman, R.: The Khalimsky line as a foundation for digital topology. In: O, YL., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds.) Shape in Picture. Computer and Systems Sciences, vol. 126, pp. 3–20. Springer (1994)

  93. Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan surface theorem for three-dimensional digital spaces. Discrete Comput. Geom. 6(2), 155–161 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  94. Köthe, U.: Generische Programmierung für die Bildverarbeitung. BoD–Books on Demand (2000)

  95. Kovalevsky, V.: Axiomatic digital topology. J. Math. Imaging Vis. 26(1), 41–58 (2006)

    Article  MathSciNet  Google Scholar 

  96. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)

    Article  Google Scholar 

  97. Krahnstoever, N., Lorenz, C.: Computing curvature-adaptive surface triangulations of three-dimensional image data. Vis. Comp. 20(1), 17–36 (2004)

    Article  Google Scholar 

  98. Lachaud, J.-O., Montanvert, A.: Continuous analogs of digital boundaries: a topological approach to iso-surfaces. Graph. Models Image Process. 62(3), 129–164 (2000)

    Article  Google Scholar 

  99. Lachaud, J.-O., Thibert, B.: Properties of gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  100. Latecki, L.J.: 3D well-composed pictures. Graph. Models Image Process. 59(3), 164–172 (1997)

    Article  Google Scholar 

  101. Latecki, L.J.: Discrete Representation of Spatial Objects in Computer Vision, vol. 11. Springer, Berlin (1998)

    MATH  Google Scholar 

  102. Latecki, L.J.: Well-composed sets. Adv. Electron. Electron Phys. 112, 95–163 (2000)

    Google Scholar 

  103. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  104. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)

    Article  Google Scholar 

  105. Le Guyader, C., Vese, L.A.: Self-repelling snakes for topology-preserving segmentation models. IEEE Trans. Image Process. 17(5), 767–779 (2008)

    Article  MathSciNet  Google Scholar 

  106. Lee, C.-N., Poston, T., Rosenfeld, A.: Winding and Euler numbers for 2D and 3D digital images. Graph. Models Image Process. 53(6), 522–537 (1991)

    Article  MATH  Google Scholar 

  107. Lee, C.-N., Rosenfeld, A.: Computing the Euler number of a 3D image. Center for Automation Research Technical Report CAR-TR-205 (1986)

  108. Lee, J.-J., Lee, P.-H., Lee, S.-W., Yuille, A.L., Koch, C.: Adaboost for text detection in natural scene. In: ICDAR, pp. 429–434 (2011)

  109. Lévy, B.: Laplace–Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications, 2006. SMI 2006, pp. 13–13. IEEE (2006)

  110. Lima, E.L.: The Jordan–Brouwer separation theorem for smooth hypersurfaces. Am. Math. Mon. 95(1), 39–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  111. Liu, J., Huang, S., Nowinski, W.L.: Registration of brain atlas to MR images using topology preserving front propagation. J. Signal Process. Syst. 55(1–3), 209–216 (2009)

    Article  Google Scholar 

  112. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Special Interest Group on Computer GRAPHics and Interactive Techniques, 21(3), pp. 163–169. ACM (1987)

  113. Lunscher, W.H.H.J., Beddoes, M.P.: Fast binary-image boundary extraction. Comput. Vis. Graph. Image Process. 38((3), 229–257 (1987)

    Article  Google Scholar 

  114. Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995)

    Article  Google Scholar 

  115. Marchadier, J., Arquès, D., Michelin, S.: Thinning grayscale well-composed images. Pattern Recogn. Lett. 25(5), 581–590 (2004)

    Article  MATH  Google Scholar 

  116. Mazo, L.: Déformations homotopiques dans les images digitales n-aires. PhD thesis, Université de Strasbourg (2011)

  117. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44(1), 19–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  118. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Topology on digital label images. J. Math. Imaging Vis. 44(3), 254–281 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  119. Meinhardt-Llopis, E.: Morphological and statistical techniques for the analysis of 3D images. PhD thesis, Universitat Pompeu Fabra, Spain (2011)

  120. Meyer, F.: Skeletons and perceptual graphs. Signal Process. 16(4), 335–363 (1989)

    Article  MathSciNet  Google Scholar 

  121. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics, vol. 3, pp. 35–57. Springer (2003)

  122. Miri, S., Passat, N., Armspach, J.-P.: Topology-preserving discrete deformable model: Application to multi-segmentation of brain MRI. In: International Conference on Image and Signal Processing, pp. 67–75. Springer (2008)

  123. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

    Article  Google Scholar 

  124. Mylopoulos, J.P., Pavlidis, T.: On the topological properties of quantized spaces, I. The notion of dimension. J. ACM 18(2), 239–246 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  125. Mylopoulos, J.P., Pavlidis, T.: On the topological properties of quantized spaces, II. Connectivity and order of connectivity. J. ACM 18(2), 247–254 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  126. Najman, L., Couprie, M.: Watershed algorithms and contrast preservation. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 2886, pp. 62–71. Springer (2003)

  127. Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Hendriks, C.L. Luengo, Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing—Proceedings of the 11th International Symposium on Mathematical Morphology (ISMM), volume 7883 of Lecture Notes in Computer Science, pp. 37–48, Heidelberg. Springer (2013)

  128. Najman, L., Romon, P. (eds.) Discrete curvature: theory and applications, volume 3 of Actes des rencontres du CIRM, France. CEDRAM (2014)

  129. Najman, L., Romon, P. (eds.) Modern Approaches to Discrete Curvature, volume 2184 of Lecture Notes in Mathematics. Springer International Publishing (2017)

  130. Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994)

    Article  Google Scholar 

  131. Najman, L., Talbot, H.: Mathematical Morphology. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  132. Nakahara, M.: Geometry, Topology and Physics. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  133. Newman, M.H.A.: Elements of the Topology of Plane Sets of Points. Cambridge University Press, Cambridge (1939)

    MATH  Google Scholar 

  134. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–408 (2013)

    Article  MATH  Google Scholar 

  135. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Sufficient conditions for topological invariance of 2D images under rigid transformations. In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 7749, pp. 155–168. Springer (2013)

  136. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2d digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  137. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Well-composed images and rigid transformations. In: IEEE International Conference on Image Processing, pp. 3035–3039 (2013)

  138. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  139. Papert, S., Minsky, M.: Perceptrons: An Introduction to Computational Geometry. The MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  140. Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer, Berlin (2012)

    MATH  Google Scholar 

  141. Pham, D.L., Bazin, P.-L., Prince, J.L.: Digital topology in brain imaging. Signal Process. Mag. 27(4), 51–59 (2010)

    Article  Google Scholar 

  142. Poupon, F., Mangin, J., Hasboun, D., Poupon, C., Magnin, I., Frouin, V.: Multi-object deformable templates dedicated to the segmentation of brain deep structures. Medical Image Computing and Computer-Assisted Intervention, MICCAI ’98, pp. 1134–1143 (1998)

  143. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41(1–2), 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  144. Ronse, C.: Flat morphological operators on arbitrary power lattices. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol. 2616, pp. 1–21. Springer (2003)

  145. Rosenfeld, A.: Connectivity in digital pictures. J. ACM 17(1), 146–160 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  146. Rosenfeld, A.: Arcs and curves in digital pictures. J. ACM 20(1), 81–87 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  147. Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  148. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86(8), 621–630 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  149. Rosenfeld, A.: Fuzzy digital topology. Inf. Control 40(1), 76–87 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  150. Rosenfeld, A.: Picture Languages-Formal Model of Picture Recognition. Academic Press, New York (1979)

    MATH  Google Scholar 

  151. Rosenfeld, A.: On connectivity properties of grayscale pictures. Pattern Recogn. 16(1), 47–50 (1983)

    Article  Google Scholar 

  152. Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology-preserving deformations of two-valued digital pictures. Graph. Models Image Process. 60(1), 24–34 (1998)

    Article  Google Scholar 

  153. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)

    Article  MATH  Google Scholar 

  154. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the fifth Eurographics symposium on Geometry processing, pp. 225–233. Eurographics Association (2007)

  155. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34(9), 1940–1964 (2015)

    Article  Google Scholar 

  156. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. 4(8), 1153–1160 (1995)

    Article  Google Scholar 

  157. Ségonne, F.: Active contours under topology control—genus preserving level sets. Int. J. Comput. Vis. 79(2), 107–117 (2008)

    Article  Google Scholar 

  158. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, Cambridge (1982)

    MATH  Google Scholar 

  159. Serra, J., Kiran, B.R.: Digitization of partitions and tessellations. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) Discrete Geometry for Computer Imagery Lecture Notes in Computer Science, vol. 9647, pp. 323–334. Springer (2016)

  160. Shekhar, R., Fayyad, E., Yagel, R., Cornhill, J. F.: Octree-based decimation of marching cubes surfaces. In: Visualization’96, pp. 335–342. IEEE (1996)

  161. Shi, Y., Lai, R., Gill, R., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace-Beltrami embedding space. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 327–334. Springer (2011)

  162. Siqueira, M., Latecki, L.J., Gallier, J.: Making 3D binary digital images well-composed. In: Electronic Imaging 2005, pp. 150–163. International Society for Optics and Photonics (2005)

  163. Siqueira, M., Latecki, L.J., Tustison, N., Gallier, J., Gee, J.: Topological repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)

    Article  MathSciNet  Google Scholar 

  164. Snidaro, L., Foresti, G.L.: Real-time thresholding with Euler numbers. Pattern Recogn. Lett. 24(9), 1533–1544 (2003)

    Article  MATH  Google Scholar 

  165. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  166. Soille, P., Pesaresi, M.: Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Trans. Geosci. Remote Sens. 40(9), 2042–2055 (2002)

    Article  Google Scholar 

  167. Sossa-Azuela, J.H., Santiago-Montero, R., Pérez-Cisneros, M., Rubio-Espino, E.: Computing the Euler number of a binary image based on a vertex codification. J. Appl. Res. Technol. 11(3), 360–370 (2013)

    Article  Google Scholar 

  168. Stelldinger, P.: Image Digitization and Its Influence on Shape Properties in Finite Dimensions, vol. 312. IOS Press, Amsterdam (2008)

    MATH  Google Scholar 

  169. Stelldinger, P., Köthe, U.: Towards a general sampling theory for shape preservation. Image Vis. Comput. 23(2), 237–248 (2005)

    Article  MATH  Google Scholar 

  170. Stelldinger, P., Latecki, L.J.: 3D object digitization: majority interpolation and marching cubes. In: IEEE International Conference on Pattern Recognition, vol. 2, pp. 1173–1176. IEEE (2006)

  171. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)

    Article  Google Scholar 

  172. Stelldinger, P., Strand, R.: Topology preserving digitization with FCC and BCC grids. In: International Workshop on Combinatorial Image Analysis, pp. 226–240. Springer (2006)

  173. Stout, L.N.: Two discrete forms of the Jordan curve theorem. Am. Math. Mon. 95(4), 332–336 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  174. Sundaramoorthi, G., Yezzi, A.: Global regularizing flows with topology preservation for active contours and polygons. IEEE Trans. Image Process. 16(3), 803–812 (2007)

    Article  MathSciNet  Google Scholar 

  175. Tajine, M., Ronse, C.: Topological properties of Hausdorff discretizations. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and Its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 18, pp. 41–50. Springer (2002)

  176. Toriwaki, J., Yoshida, H.: Fundamentals of Three-Dimensional Digital Image Processing. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  177. Tu, W.-C., He, S., Yang, Q., Chien, S.-Y.: Real-time salient object detection with a minimum spanning tree. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2334–2342 (2016)

  178. Tustison, N.J., Avants, B.B., Siqueira, M., Gee, J.C.: Topological well-composedness and glamorous glue: a digital gluing algorithm for topologically constrained front propagation. IEEE Trans. Image Process. 20(6), 1756–1761 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  179. Tverberg, H.: A proof of the Jordan curve theorem. Bull. Lond. Math. Soc. 12(1), 34–38 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  180. Van Vliet, L.J., Young, I.T., Beckers, G.L.: An edge detection model based on non-linear Laplace filtering. In: International Workshop on Pattern Recognition and Artificial Intelligence, towards an Integration (1988)

  181. Voss, K.: Images, objects, and surfaces in \(\mathbb{Z}^n\). Int. J. Pattern Recognit. Artif. Intell. 5(05), 797–808 (1991)

    Article  Google Scholar 

  182. Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition with convolutional neural networks. In: International Conference on Pattern Recognition, pp. 3304–3308. IEEE (2012)

  183. Wang, Y., Bhattacharya, P.: Digital connectivity and extended well-composed sets for gray images. Comput. Vis. Image Underst. 68(3), 330–345 (1997)

    Article  Google Scholar 

  184. Wilson, P.R.: Euler formulas and geometric modeling. IEEE Comput. Graph. Appl. 8(5), 24–36 (1985)

    Article  Google Scholar 

  185. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Efficient computation of attributes and saliency maps on tree-based image representations. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing—Proceedings of the 12th International Symposium on Mathematical Morphology (ISMM), volume 9082 of Lecture Notes in Computer Science, pp. 693–704, Reykjavik, Iceland. Springer (2015)

  186. Yongchao, X., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469 (2017)

    Article  Google Scholar 

  187. Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: application to object segmentation on the tree of shapes. In: Proceedings of the 19th IEEE International Conference on Image Processing (ICIP), pp. 1577–1580, Orlando, Florida, USA (2012)

  188. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: applications using tree-based image representations. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), pp. 485–488, Tsukuba Science City, Japan. IEEE Computer Society (2012)

  189. Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology: blood vessels segmentation and a generalization of constrained connectivity. In: Hendriks, C.L. Luengo., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing—Proceedings of the 11th International Symposium on Mathematical Morphology (ISMM), volume 7883 of Lecture Notes in Computer Science, pp. 390–401, Heidelberg. Springer (2013)

  190. Yongchao, X., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1126–1140 (2016)

    Article  Google Scholar 

  191. Yongchao, X., Monasse, P., Géraud, T., Najman, L.: Tree-based morse regions: a topological approach to local feature detection. IEEE Trans. Image Process. 23(12), 5612–5625 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  192. Yang, H.S., Sengupta, S.: Intelligent shape recognition for complex industrial tasks. IEEE Control Syst. Mag. 8(3), 23–30 (1988)

    Article  Google Scholar 

  193. Ye, Q., Doermann, D.: Text detection and recognition in imagery: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1480–1500 (2015)

    Article  Google Scholar 

  194. Yokoi, S., Toriwaki, J.-I., Fukumura, T.: An analysis of topological properties of digitized binary pictures using local features. Comput. Graph. Image Process. 4(1), 63–73 (1975)

    Article  MathSciNet  Google Scholar 

  195. Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 fps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1404–1412 (2015)

  196. Zhu, Y., Yao, C., Bai, X.: Scene text detection and recognition: recent advances and future trends. Front. Comput. Sci. 10(1), 19–36 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Géraud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutry, N., Géraud, T. & Najman, L. A Tutorial on Well-Composedness. J Math Imaging Vis 60, 443–478 (2018). https://doi.org/10.1007/s10851-017-0769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0769-6

Keywords

Navigation