Skip to main content
Log in

Topology-Preserving Conditions for 2D Digital Images Under Rigid Transformations

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In the continuous domain \(\mathbb{R}^{n}\), rigid transformations are topology-preserving operations. Due to digitization, this is not the case when considering digital images, i.e., images defined on \(\mathbb{Z}^{n}\). In this article, we begin to investigate this problem by studying conditions for digital images to preserve their topological properties under all rigid transformations on \(\mathbb{Z}^{2}\). Based on (i) the recently introduced notion of DRT graph, and (ii) the notion of simple point, we propose an algorithm for evaluating digital images topological invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Fig. 8
Fig. 9
Algorithm 2
Algorithm 3
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The term digital refers to the digitization process of numeric images and transformations for such images, while the term discrete refers to the non-continuous structure of these transformations.

References

  1. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  2. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)

    Article  Google Scholar 

  3. Jain, V., Bollmann, B., Richardson, M., Berger, D., Helmstaedter, M., Briggman, K., Denk, W., Bowden, J., Mendenhall, J., Abraham, W., Harris, K., Kasthuri, N., Hayworth, K., Schalek, R., Tapia, J., Lichtman, J., Seung, S.: Boundary learning by optimization with topological constraints. In: CVPR, Proceedings, pp. 2488–2495. IEEE, New York (2010)

    Google Scholar 

  4. Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3-D binary images according to continuous one-to-one mappings. IEEE Trans. Image Process. 20(8), 2135–2145 (2011)

    Article  MathSciNet  Google Scholar 

  5. Dawant, B., Hartmann, S., Thirion, J., Maes, F., Vandermeulen, D., Demaerel, P.: Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form deformations: Part I, methodology and validation on normal subjects. IEEE Trans. Med. Imaging 18(10), 902–916 (1999)

    Article  Google Scholar 

  6. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Sufficient conditions for topological invariance of 2D digital images under rigid transformations. In: DGCI, Proceedings. Lecture Notes in Computer Science, vol. 7749, pp. 155–168. Springer, Berlin (2013)

    Google Scholar 

  7. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–408 (2013)

    Article  Google Scholar 

  8. Jacob, M.-A., Andres, E.: On discrete rotations. In: DGCI, Proceedings, pp. 161–174 (1995)

    Google Scholar 

  9. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with rotations. Theor. Comput. Sci. 368(3), 196–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching with scaling. J. Algorithms 13(1), 2–32 (1992)

    Article  MATH  Google Scholar 

  11. Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimensional scaled matching. Algorithmica 53(3), 314–336 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hundt, C., Liśkiewicz, M., Nevries, R.: A combinatorial geometrical approach to two-dimensional robust pattern matching with scaling and rotation. Theor. Comput. Sci. 410(51), 5317–5333 (2009)

    Article  MATH  Google Scholar 

  13. Hundt, C., Liśkiewicz, M.: On the complexity of affine image matching. In: STACS, Proceedings. Lecture Notes in Computer Science, vol. 4393, pp. 284–295. Springer, Berlin (2007)

    Google Scholar 

  14. Hundt, C.: Affine image matching is uniform TC0-complete. In: CPM, Proceedings. Lecture Notes in Computer Science, vol. 6129, pp. 13–25. Springer, Berlin (2010)

    Google Scholar 

  15. Hundt, C., Liśkiewicz, M.: Combinatorial bounds and algorithmic aspects of image matching under projective transformations. In: MFCS, Proceedings. Lecture Notes in Computer Science, vol. 5162, pp. 395–406. Springer, Berlin (2008)

    Google Scholar 

  16. Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique, Thèse d’État. Université Strasbourg 1 (1991)

  17. Andres, E.: The quasi-shear rotation. In: DGCI, Proceedings. Lecture Notes in Computer Science, vol. 1176, pp. 307–314. Springer, Berlin (1996)

    Google Scholar 

  18. Richman, M.S.: Understanding discrete rotations. In: ICASSP, Proceedings, vol. 3, pp. 2057–2060. IEEE, New York (1997)

    Google Scholar 

  19. Nouvel, B.: Rotations discrètes et automates cellulaires. Ph.D. thesis, École Normale Supérieure de Lyon (2006)

  20. Nouvel, B., Rémila, E.: Incremental and transitive discrete rotations. In: IWCIA, Proceedings. Lecture Notes in Computer Science, vol. 4040, pp. 199–213. Springer, Berlin (2006)

    Google Scholar 

  21. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of rotation angles from digital images. Pattern Recognit. 42(8), 1708–1717 (2009)

    Article  MATH  Google Scholar 

  22. Bertrand, G.: On critical kernels. C. R. Acad. Sci., Sér. 1 Math. 345, 363–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rosenfeld, A.: Connectivity in digital pictures. J. ACM 17(1), 146–160 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  25. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, homotopy and reduction in digital images. Acta Appl. Math. 113(2), 167–193 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44(1), 19–37 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Khalimsky, E.: Topological structures in computer science. J. Appl. Math. Simul. 1(1), 25–40 (1987)

    MATH  MathSciNet  Google Scholar 

  28. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)

    Article  Google Scholar 

  29. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognit. Lett. 15(2), 169–175 (1994)

    Article  MATH  Google Scholar 

  30. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D, and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 637–648 (2009)

    Article  Google Scholar 

  31. Ronse, C.: A topological characterization of thinning. Theor. Comput. Sci. 43(1), 31–41 (2007)

    MathSciNet  Google Scholar 

  32. Bertrand, G.: On P-simple points. C. R. Acad. Sci., Sér. 1 Math. 321, 1077–1084 (1995)

    MATH  MathSciNet  Google Scholar 

  33. Passat, N., Mazo, L.: An introduction to simple sets. Pattern Recognit. Lett. 30(15), 1366–1377 (2009)

    Article  Google Scholar 

  34. Couprie, M., Bezerra, F.N., Bertrand, G.: Topological operators for grayscale image processing. J. Electron. Imaging 10(4), 1003–1015 (2001)

    Article  Google Scholar 

  35. Latecki, L.J.: Multicolor well-composed pictures. Pattern Recognit. Lett. 16(4), 425–431 (1997)

    Article  Google Scholar 

  36. Damiand, G., Dupas, A., Lachaud, J.-O.: Fully deformable 3D digital partition model with topological control. Pattern Recognit. Lett. 32(9), 1374–1383 (2011)

    Article  Google Scholar 

  37. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Topology on digital label images. J. Math. Imaging Vis. 44(3), 254–281 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Pham, D., Bazin, P.-L., Prince, J.: Digital topology in brain imaging. IEEE Signal Process. Mag. 27(4), 51–59 (2010)

    Article  Google Scholar 

  39. Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995)

    Article  Google Scholar 

  40. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  41. Bazin, P.-L., Ellingsen, L.M., Pham, D.L.: Digital homeomorphisms in deformable registration. In: IPMI, Proceedings. Lecture Notes in Computer Science, vol. 4584, pp. 211–222. Springer, Berlin (2007)

    Google Scholar 

  42. Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Homotopy in digital spaces. Discrete Appl. Math. 125(1), 3–24 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Bertrand, G., Couprie, M., Passat, N.: A note on 3-D simple points and simple-equivalence. Inf. Process. Lett. 109(13), 700–704 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: periodicity and quasi-periodicity properties. Discrete Appl. Math. 147(2–3), 325–343 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Thibault, Y.: Rotations in 2D and 3D discrete spaces. Ph.D. thesis, Université Paris-Est (2010)

  46. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)

    Article  Google Scholar 

  47. Mazo, L.: A framework for label images. In: CTIC, Proceedings. Lecture Notes in Computer Science, vol. 7309, pp. 1–10. Springer, Berlin (2012)

    Google Scholar 

  48. Berenstein, C., Lavine, D.: On the number of digital straight line segments. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 880–887 (1988)

    Article  MATH  Google Scholar 

  49. Nagy, B.: An algorithm to find the number of the digitizations of discs with a fixed radius. Electron. Notes Discrete Math. 20, 607–622 (2005)

    Article  Google Scholar 

  50. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, San Diego (1983)

    Google Scholar 

  51. Heijmans, H.J.A.M.: Discretization of morphological operators. J. Vis. Commun. Image Represent. 3(2), 182–193 (1992)

    Article  Google Scholar 

  52. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received partial funding from the French Agence Nationale de la Recherche (Grant Agreement ANR-10-BLAN-0205 03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Ngo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngo, P., Kenmochi, Y., Passat, N. et al. Topology-Preserving Conditions for 2D Digital Images Under Rigid Transformations. J Math Imaging Vis 49, 418–433 (2014). https://doi.org/10.1007/s10851-013-0474-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0474-z

Keywords

Navigation