Skip to main content
Log in

From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose an algorithm allowing the construction of a structural representation of the cortical topography from a T1-weighted 3D MR image. This representation is an attributed relational graph (ARG) inferred from the 3D skeleton of the object made up of the union of gray matter and cerebro-spinal fluid enclosed in the brain hull. In order to increase the robustness of the skeletonization, topological and regularization constraints are included in the segmentation process using an original method: the homotopically deformable regions. This method is halfway between deformable contour and Markovian segmentation approaches. The 3D skeleton is segmented in simple surfaces (SSs) constituting the ARG nodes (mainly cortical folds). The ARG relations are of two types: first, theSS pairs connected in the skeleton; second, theSS pairs delimiting a gyrus. The described algorithm has been developed in the frame of a project aiming at the automatic detection and recognition of the main cortical sulci. Indeed, the ARG is a synthetic representation of all the information required by the sulcus identification. This project will contribute to the development of new methodologies for human brain functional mapping and neurosurgery operation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-F. Mangin, V. Frouin, I. Bloch, B. Bendriem, and J. Lopez-Krahe. “Fast nonsupervised 3D registration of PET and MR images of the brain,”J. Cereb. Blood Flow Metab., vol. 14(5), pp. 749–762, 1994.

    Google Scholar 

  2. J. Talairach and P. Tournoux.Co—Planar Stereotaxic Atlas of the Human Brain. 3—Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publisher, Inc., Georg Thieme Verlag: Stuttgart, New York, 1988.

    Google Scholar 

  3. M. Ono, S. Kubik, and C. D. Abernethey.Atlas of the Cerebral Sulci. Georg Thieme Verlag, 1990.

  4. A. Evans. “3D multimodality human brain mapping: past, present and future,” inQuantification of Brain Function. Tracer Kinetics and Image Analysis in Brain PET, Elsevier Science, 1993, pp. 373–389.

  5. V. Frouin, J.-F. Mangin, J. Régis, and B. Bendriem. “A 3D editor of the cortical sulcal topography,” inVIIth. IEEE Symp. on Computer-Based Medical Systems, Winston Salem, USA, 1994, pp. 323–328.

  6. J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, Y. Samson, and J. Lopez-Krahe. “3-D visualization of the cortical sulcal topography,” inVIIIth. Conf. on Computer Assisted Radiology, Winston Salem, USA, 1994, pp. 179–184.

  7. J. Régis.Anatomie sulcale profonde et cartographie fonctionnelle du cortex cérébral. MD Thesis, Université d'Aix-Marseille II, France, 1994.

    Google Scholar 

  8. J. Régis, J.-F. Mangin, V. Frouin, F. Sastre, L. C. Peragut, and Y. Samson. “Cerebral cortex generic model for cortical localization and preoperative multimodal integration in epilepsy surgery,”Stereotactic and Functional Neurosurgery, in press.

  9. J.-F. Mangin, J. Régis, I. Bloch, V. Frouin, Y. Samson, and J. Lopez-Krahe. “A Markovian random field based random graph modelling the human cortical topography,” inFirst Int. Conf. on Computer Vision, Virtual Reality and Robotics in Medicine, vol. 905 of Lecture Notes in Computer Science, Springer-Verlag Nice, France, 1995, pp. 177–183.

  10. J.-F. Mangin.Mise en correspondance d'images médicales 3D multi-modalités multi-individus pour la corrélation anatomo-fonctionnelle cérebrale. PhD Thesis, École Nationale Supérieure des Télécommunications, Paris, France, 1995.

    Google Scholar 

  11. M. Joliot.Traitement du signal de résonance magnétique nucléaire in vivo. PhD thesis, Université de Paris-Sud, Orsay, France, 1992.

    Google Scholar 

  12. M. Desvignes, H. Fawal, M. Revenu, D. Bloyet, J. M. Travère, P. Allain, and J. C. Baron. “Calcul de la profondeur en un point des sillons du cortex sur des images RMN tridimensionnelles,” inQuatorzième Colloque GRETSI, Juan-les-Pins, France, 1993, pp. 1267–1270.

  13. J. P. Thirion and A. Gourdon. “Computing the differential characteristics of isodensity surfaces,”Computer Vision and Image Understanding, vol. 61(2), pp. 190–202, 1995.

    Google Scholar 

  14. G. Székely, Ch. Brechbühler, O. Kübler, R. Ogniewicz, and T. Budinger. “Mapping the human cerebral cortex using 3D medial manifolds,” inSPIE Visualization in Biomedical Computing, vol. 1808, 1992, pp. 130–144.

  15. J. C. Bezdec, L. O. Hall, and L. P. Clarke. “Review of MR image segmentation techniques using pattern recognition,”Medical Physics, vol. 20(4), pp. 1033–1048, 1993.

    Google Scholar 

  16. C. Li, D. B. Goldgof, and L. O. Hall. “Knowledge-based classification and tissue labeling of MR images of human brain,”IEEE Trans. on Medical Imaging, vol. 12(4), pp. 740–750, 1993.

    Google Scholar 

  17. T. Taxt and A. Lundervold. “Multispectral analysis of the brain using magnetic resonance imaging,”IEEE Trans. on Medical Imaging, vol. 13(3), pp. 470–481, 1994.

    Google Scholar 

  18. Z. Liang, J. R. MacFall, and D. P. Harrington. “Parameter estimation and tissue segmentation from multispectral MR images,”IEEE Trans. on Medical Imaging, vol. 13(3), pp. 441–449, 1994.

    Google Scholar 

  19. A. N. Tikhonov and V.Y. Arsenin.Solution of ill-posed problems. Winston, New York, 1977.

  20. I. Cohen, L. Cohen, and N. Ayache. “Using deformable surfaces to segment 3-D images and infer differential structures,”CVGIP: Image Understanding, vol. 56(2), pp. 242–263, 1992.

    Google Scholar 

  21. C. A. Davatzikos and J. L. Prince. “An active contour model for mapping the cortex,”IEEE Trans. on Medical Imaging, vol. 14(1), pp. 65–80, 1995.

    Google Scholar 

  22. N. Rougon and F. Prêteux. “Directional adaptive deformable models for segmentation with application to 2D and 3D medical images,” inSPIE Medical Imaging VII, vol. 1898, Newport Beach, California, 1993, pp. 193–207.

  23. C. N. Lee, T. Poston, and A. Rosenfeld. “Holes and genus of 2D and 3D digital images,”CVGIP: Graph. Models and Image Proc., vol. 55(1), pp. 20–47, 1993.

    Google Scholar 

  24. W. Hurewicz and H. Wallman.Dimension theory. Princeton University Press, Princeton, New Jersey, 1948.

    Google Scholar 

  25. R. H. Crowell and R. H. Fox.Introduction to knot theory. Blaisdell publishing Company, 1963.

  26. V. A. Kovalevsky. “Finite topology as applied to image analysis,”Comput. Vision, Graph. Image Proc., vol. 46, pp. 141–161, 1989.

    Google Scholar 

  27. G. T. Herman. “On topology as applied to image analysis,”Comput. Vision, Graph. Image Proc., vol. 52, pp. 409–415, 1990.

    Google Scholar 

  28. G. T. Herman and D. Webster. “A topological proof of a surface tracking algorithm,”Comput. Vision, Graph. Image Proc., vol. 23, pp. 162–177, 1983.

    Google Scholar 

  29. G. Malandain, G. Bertrand, and N. Ayache. “Topological segmentation of discrete surfaces,”Int. J. of Computer Vision, vol. 10(2), pp. 158–183, 1993.

    Google Scholar 

  30. T. Y. Kong. “A digital fundamental group,”Comput. Graphics, vol. 13, pp. 159–166, 1989.

    Google Scholar 

  31. J. Serra.Image Analysis and Mathematical Morphology. Academic Press, 1982.

  32. D. G. Morgenthaler. “Three-dimensional simple points: Serial erosion, parallel thinning and skeletonization,” Comput. Vision Laboratory, University of Maryland, Technical Report TR—1005, 1981.

  33. T. Y. Kong and A. Rosenfeld. “Digital topology: Introduction and survey,”Comput. Vision, Graph. Image Proc., vol. 48, pp. 357–393, 1989.

    Google Scholar 

  34. T. Y. Kong. “On the problem of determining whether a parallel reduction operator for n-dimensional binary images always preserves topology,” inSPIE Vision Geometry II, vol. 2060, 1993, pp. 69–77.

  35. G. Bertrand and G. Malandain. “A new characterisation of three-dimensional simple points,”Pattern Recognition Letters, vol. 15, pp. 169–175, 1994.

    Google Scholar 

  36. G. Bertrand. “Simple points, topological numbers and geodesic neighborhoods in cubic grids,”Pattern Recognition Letters, vol. 15, pp. 1003–1010, 1994.

    Google Scholar 

  37. P. K. Saha and B. B. Chaudhuri. “Detection of 3D simple points for topoloy preserving transformations with application to thinning,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 16(10), pp. 1028–1032, 1994.

    Google Scholar 

  38. S. Geman and D. Geman. “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,”IEEE Trans. Pattern Anal. Mach. Intell., vpl. 6(6), pp. 721–741, 1984.

    Google Scholar 

  39. X. Descombes, J.-F. Mangin, E. Pechersky, and M. Sigelle. “Fine structure preserving Markov model for image processing,” inIXth. Scandinavian Conference on Image Analysis, Uppsala, Sweden, 1995, pp. 349–356.

  40. J.-F. Mangin, I. Bloch, J. Lopez-Krahe, and V. Frouin. “Chamfer distances in anisotropic 3D images,” inVIIth. European Signal Processing Conference, Edimburgh, Scotland, 1994, pp. 975–978.

  41. J.-F. Mangin, F. Tupin, V. Frouin, I. Bloch, R. Rougetet, J. Régis, and J. Lopez-Krahe. “Deformable topological models for segmentation of 3D medical images,” inXIVth. Int. Conf. on Information Processing in Medical Imaging France (Kluwer), 1995, pp. 153–164.

    Google Scholar 

  42. J. Besag. “Spatial interaction and statistical analysis of lattice systems,”A. Royal Stat. Soc. Serie B, vol. 36, pp. 721–741, 1976.

    Google Scholar 

  43. Y. F. Tsao and K. S. Fu. “A parallel thinning algorithm for 3D pictures,”Comput. Vision, Graph. Image Proc., vol. 17, pp. 315–331, 1981.

    Google Scholar 

  44. W. X. Gong and G. Bertrand. “A simple parallel 3D thinning algorithm,” inXth. Int. Conf. on Pattern Recognition, Atlantic City, USA, 1990, pp. 188–190.

  45. R. H. Fox. “On homotopy type and deformation retracts,”Ann. of Math., vol. 44, pp. 40–50, 1943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangin, JF., Frouin, V., Bloch, I. et al. From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J Math Imaging Vis 5, 297–318 (1995). https://doi.org/10.1007/BF01250286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250286

Keywords

Navigation