Skip to main content
Log in

Topological Repairing of 3D Digital Images

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present here a new randomized algorithm for repairing the topology of objects represented by 3D binary digital images. By “repairing the topology”, we mean a systematic way of modifying a given binary image in order to produce a similar binary image which is guaranteed to be well-composed. A 3D binary digital image is said to be well-composed if, and only if, the square faces shared by background and foreground voxels form a 2D manifold. Well-composed images enjoy some special properties which can make such images very desirable in practical applications. For instance, well-known algorithms for extracting surfaces from and thinning binary images can be simplified and optimized for speed if the input image is assumed to be well-composed. Furthermore, some algorithms for computing surface curvature and extracting adaptive triangulated surfaces, directly from the binary data, can only be applied to well-composed images. Finally, we introduce an extension of the aforementioned algorithm to repairing 3D digital multivalued images. Such an algorithm finds application in repairing segmented images resulting from multi-object segmentations of other 3D digital multivalued images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Stelldinger, P., Köthe, U.: Towards a general sampling theory for shape preservation. Image Vis. Comput. J. 23(2), 237–248 (2005)

    Article  Google Scholar 

  3. Latecki, L.J.: 3d well-composed pictures. Graph. Models Image Process. 59(3), 164–172 (1997)

    Article  Google Scholar 

  4. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. In: Computer Graphics, Proceedings of ACM SIGGRAPH 87, vol. 21, pp. 163–169 (1987)

  5. Lachaud, J.-O., Montanvert, A.: Continuous analogs of digital boundaries: a topological approach to iso-surfaces. Graph. Models 62(3), 129–164 (2000)

    Article  Google Scholar 

  6. Nielson, G.M., Hamann, B.: The asymptotic decider: resolving the ambiguity in marching cubes. In: Proceedings of the 2nd IEEE Conference on Visualization (Visualization’91), pp. 83–91, San Diego, California, USA, 22–25 October 1991

  7. Natarajan, B.: On generating topologically consistent isosurfaces from uniform samples. Vis. Comput. 11(1), 52–62 (1994)

    Article  Google Scholar 

  8. Chernyaev, E.: Marching cubes 33: Construction of topologically correct isosurfaces. Technical Report CN/95-17, CERN (1995)

  9. Lewiner, T., Lopes, H., Vieira, A., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8(2), 1–15 (2003)

    Google Scholar 

  10. Lopes, A., Brodlie, K.: Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing. IEEE Trans. Vis. Comput. Graph. 9(1), 16–27 (2003)

    Article  Google Scholar 

  11. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)

    Article  Google Scholar 

  12. Marchadier, J., Arques, D., Michelin, S.: Thinning grayscale well-composed images. Pattern Recognit. Lett. 25(5), 581–590 (2004)

    Article  Google Scholar 

  13. Stokely, E.M., Wu, S.Y.: Surface parametrization and curvature measurement of arbitrary 3-d objects: five practical methods. IEEE Trans. Pattern Recognit. Mach. Intell. 14(8), 833–840 (1992)

    Article  Google Scholar 

  14. Delingette, H.: Initialization of deformable models from 3d data. In: Proceedings of the 6th International Conference in Computer Vision (ICCV’98), pp. 311–316, Bombay, India, 4–7 January 1998

  15. Krahnstoever, N., Lorenz, C.: Computing curvature-adaptive surface triangulations of three-dimensional image data. Vis. Comput. 20(1), 17–36 (2004)

    Article  Google Scholar 

  16. Latecki, L.: Discrete Representation of Spatial Objects in Computer Vision. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  17. Herman, G., Carvalho, B.M.: Multiseeded segmentation using fuzzy connectedness. IEEE Trans. Pattern Anal. Mach. Intell. 23(5), 460–474 (2001)

    Article  Google Scholar 

  18. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3d object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 126–140 (2007)

    Article  Google Scholar 

  19. Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology-preserving deformations of two-valued digital pictures. Graph. Models Image Process. 60(1), 24–34 (1998)

    Article  Google Scholar 

  20. Mangin, J.-F., Frouin, V., Bloch, I., Regis, J., Lopez-Krahe, J.: From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5, 297–318 (1995)

    Article  Google Scholar 

  21. MacDonald, D., Kabsni, N., Avis, D., Evans, A.C.: Automated 3-d extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12(3), 340–355 (2000)

    Article  Google Scholar 

  22. Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20(1), 70–80 (2001)

    Article  Google Scholar 

  23. Shattuck, D.W., Leahy, R.M.: Automated graph-based analysis and correction of cortical volume topology. IEEE Trans. Med. Imaging 20(11), 464–472 (2001)

    Article  Google Scholar 

  24. Han, X., Xu, C., Braga-Neto, U., Prince, J.L.: Topology correction in brain cortex segmentation using a multiscale, graph-based approach. IEEE Trans. Med. Imaging 21(2), 109–121 (2002)

    Article  Google Scholar 

  25. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  26. Bischoff, S., Kobbelt, L.: Sub-voxel topology control for level-set surfaces. Comput. Graph. Forum 22(3), 273–280 (2003)

    Article  Google Scholar 

  27. Bazin, P.-L., Pham, D.L.: Topology correction using fast marching methods and its application to brain segmentation. In: Duncan, J.S., Gerig, G. (eds.) Proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Lecture Notes in Computer Science, vol. 3750, pp. 484–491. Palm Springs, California, USA, 26–29 October 2005

  28. Segonne, F., Grimson, E., Fischl, B.: A genetic algorithm for the topology correction of cortical surfaces. In: Christensen, G., Sonka, M. (eds.) International Conference on Information Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 3565, pp. 393–405. Glenwood Springs, Colorado, USA, 10–15 July 2005

  29. Kriegeskorte, N., Goeble, R.: An efficient algorithm for topologically segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14(2), 329–346 (2001)

    Article  Google Scholar 

  30. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  31. Guskov, I., Wood, Z.: Topological noise removal. In: Proceedings of the 2001 Conference on Graphics Interface, pp. 19–26, Ottawa, Ontario, Canada, 7–9 June 2001

  32. Aktouf, Z., Bertrand, G., Perroton, L.: A three-dimensional holes closing algorithm. Pattern Recognit. Lett. 23(5), 523–530 (2002)

    Article  MATH  Google Scholar 

  33. Szymczak, A., Vanderhyde, J.: Extraction of topologically simple isosurfaces from volume datasets. In: Proceedings of the 14th IEEE Conference on Visualization 2003 (Visualization’03), pp. 67–74, Seattle, WA, USA, 19–24 October 2003

  34. Wood, Z., Hoppe, H., Desbrun, M., Schröder, P.: Removing excess topology from isosurfaces. ACM Trans. Graph. 23(2), 190–208 (2004)

    Article  Google Scholar 

  35. Herman, G.: Geometry of Digital Spaces. Birkhäuser, Boston (1998)

    MATH  Google Scholar 

  36. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  37. Rosenfeld, A.: Fuzzy digital topology. Inf. Control 40, 76–87 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tustison, N., Siqueira, M., Gee, J.: Well-composed image filters for repairing 2-d and 3-d binary images. The Insight Journal, July–December 2006, http://hdl.handle.net/1926/305

  39. Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Siqueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, M., Latecki, L.J., Tustison, N. et al. Topological Repairing of 3D Digital Images. J Math Imaging Vis 30, 249–274 (2008). https://doi.org/10.1007/s10851-007-0054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0054-1

Keywords

Navigation