Skip to main content
Log in

Formulation and evaluation of multicomponent inclusion complex of cyclosporine A

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclosporine A (CP) inclusion complex using cyclodextrin (binary) and cyclodextrin with TPGS (ternary) was prepared by the freeze-drying method. The phase solubility study was performed to calculate the solubility parameters. The prepared formulations were evaluated for saturation solubility and drug release studies. The spectroscopy and molecular docking studies were performed to confirm the formation of inclusion complex. The phase solubility results revealed a high stability constant for both binary and ternary samples. A significant enhancement in saturation solubility and dissolution was found in the prepared inclusion complexes. The spectroscopy studies revealed no interaction between the drug and carrier. The molecular docking study displayed the formation of a stable complex with a good docking score. The diffraction pattern showed the conversion of crystalline CP into an amorphous form after the formation of the inclusion complex. The findings were also supported by the saturation solubility study, which showed a significant enhancement in solubility. From the results, it can be concluded that Cyclosporine A inclusion complex using HP βCD with TPGS is an excellent delivery system. Therefore, the prepared delivery systems may be an alternative to the conventional delivery system for enhanced solubility of highly lipophilic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaur, K., Exploring, J.R.: RSM-CCD-optimized chitosan-/gelatin-based hybrid polymer network containing CPM–β-CD inclusion complexes as controlled drug delivery systems. Polym. Bull. 76, 3569–3592 (2019)

    Article  CAS  Google Scholar 

  2. Cheirsilp, B., Rakmai, J.: Inclusion complex formation of cyclodextrin with its guest and their applications. Biol. Eng. Med. 2, 1–6 (2017)

    Article  Google Scholar 

  3. Schonbeck, C., Holm, R., Westh, P., Gunther, H., Peters: Extending the hydrophobic cavity of β-cyclodextrin results in more negative heat capacity changes but reduced binding affinities. J. Incl. Phenom. Macrocycl. Chem. 78, 351–361 (2014)

    Article  CAS  Google Scholar 

  4. Przybyla, M.A., Yilmaz, G., Becer, R.: Natural cyclodextrins and their derivatives for polymer synthesis. Polym. Chem. 11(48), 7582–7602 (2020)

    Article  CAS  Google Scholar 

  5. Das, S., Nath, S., Singh, T.S., Chattopadhyay, N.: Cavity size dependent stoichiometry of probe–cyclodextrin complexation: Experimental and molecular docking demonstration. J. Photochem. Photobiol A: Chem. 388, 112158 (2020)

    Article  CAS  Google Scholar 

  6. Saha, S., Roy, A., Roy, K., Roy, M.N.: Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

  7. Cid-Samamed, A., Rakmai, J., Mejuto, J.C., Simal-Gandara, J., Astray, G.: Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 384, 132467 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. Liu, J.Y., Zhang, X., Tian, B.R.: Selective modifications at the different positions of cyclodextrins: A review of strategies. Turkish J. Chem. 44(2), 261–278 (2020)

    Article  CAS  Google Scholar 

  9. Jun, S.W., Kim, M.S., Kim, J.S., Park, H.J., Lee, S., Woo, J.S., Hwang, S.J.: Preparation and characterization of simvastatin/ hydroxypropyl-beta-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 66, 413 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Zoeller, T., Dressman, J.B., Klein, S.: Application of a ternary HP-β- CD-complex approach to improve the dissolution performance of a poorly soluble weak acid under biorelevant conditions. Int. J. Pharm. 430, 176–183 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Ding, X., Zheng, M., Lu, J., Zhu, X.: Preparation and evaluation of binary and ternary inclusion complexes of fenofibrate/hydroxypropyl-β-cyclodextrin. J. Incl. Phen Macr Chem. 91, 17–24 (2018)

    Article  CAS  Google Scholar 

  12. Srivalli, K.M.R., Mishra, B.: Improved aqueous solubility and antihypercholesterolemic activity of ezetimibe on formulating with Hydroxypropyl-β-Cyclodextrin and hydrophilic auxiliary substances. AAPS Pharm. Sci. Tech. 17(2), 272–283 (2016)

    Article  CAS  Google Scholar 

  13. Bera, H., Chekuri, S., Sarkar, S., Kumar, S., Muvva, N.B., Mothe, S., Nadimpalli, J.: Novel pimozide-β-cyclodextrin-polyvinylpyrrolidone inclusion complexes for Tourette syndrome treatment. J. Mol. Liquid. 215, 135–143 (2016)

    Article  CAS  Google Scholar 

  14. Kurkov, S.V., Loftsson, T., Cyclodextrins: Int. J. Pharm. 453, 167–180 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Y., Zhou, Q., Jia, S., Lin, K., Fan, G., Yuan, J., Yu, S., Shi, J.: Specific modification with tpgs and drug loading of cyclodextrin polyrotaxanes and the enhanced antitumor activity study in vitro and in vivo. ACS Appl. Mater. Interfaces. 11(50), 46427–46436 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Yang, C., Qin, Y., Tu, K., Xu, C., Li, Z., Zhang, Z.: Star-shaped polymer of β–cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition. Colloids Surf. B: Biointer. 169, 10–19 (2018)

    Article  CAS  Google Scholar 

  17. Beauchesne, P.R., Chung, N.S., Wasan, K.M., Cyclosporine, A.: A review of current oral and intravenous delivery systems. Drug Dev. Ind. Pharm. 33, 211–220 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Onoue, S., Sato, H., Kawabata, Y., Mizumoto, T., Hashimoto, N., Yamada, S.: In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. J. Cont. Rel. 138, 16–23 (2009)

    Article  CAS  Google Scholar 

  19. Ismailos, G., Reppas, C., Dressman, J.B., Macheras, P.: Unusual solubility behaviour of cyclosporin A in aqueous media. J. Pharm. Pharmacol. 43, 287–289 (1991)

    Article  CAS  PubMed  Google Scholar 

  20. Onoue, S., Suzuki, H., Kojo, Y., Matsunaga, S., Sato, H., Mizumoto, T., Yuminoki, K., Hashimoto, N., Yamada, S.: Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability. Eur. J. Pharm. Sci. 62, 16–22 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Boukhris, T., Skiba, M.L., Skiba, M.: Novel oral formulation of cyclosporine-spray-dried dispersion using cyclodextrin copolymers. Digest J. Nanomat Biostr. 7(1), 143–154 (2012)

    Google Scholar 

  22. Suzuki, H., Moritani, T., Morinaga, T., Seto, Y., Sato, H., Onoue, S.: Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization. Int. J. Pharm. 519(1–2), 213–219 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki, H., Ueno, K., Mizumoto, T., Seto, Y., Sato, H., Onoue, S.: Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability. Eur. J. Pharm. Sci. 96(1), 107–114 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. Guada, M., Lasa-Saracíbar, B., Lana, H., Dios-Vieitez, M.C., Prieto, M.J.B.: Lipid nanoparticles enhance the absorption of cyclosporine A through the gastrointestinal barrier: In vitro and in vivo studies. Int. J. Pharm. 500(1–2), 154–161 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Guada, M., Lana, H., Gil, A.G., Dios-Vieitez Mdel, C., Blanco-Prieto, M.J.: Cyclosporine a lipid nanoparticles for oral administration: Pharmacodynamics and safety evaluation. Eur. J. Pharm. Biopharm. 101, 112–118 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Yu, H., Xia, D., Zhu, Q., Zhu, C., Chen, D., Gan, Y.: Supersaturated polymeric micelles for oral cyclosporine a delivery. Eur. J. Pharm. Biopharm. 85(3), 1325–1336 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Binkhathlan, Z., Ali, R., Qamar, W., Lavasanifar, A.: Pharmacokinetics of orally administered poly(Ethylene Oxide)-block-Poly(ε-Caprolactone) micelles of cyclosporine A in rats: Comparison with Neoral®. J. Pharm. Pharm. Sci. 21, 177s–191s (2018)

    Article  Google Scholar 

  28. Binkhathlan, Z., Ali, R., Qamar, W., Lavasanifar, A.: Pharmacokinetic and tissue distribution of orally administered cyclosporine A-loaded poly(ethylene oxide)-block-Poly(ε-caprolactone) micelles versus Sandimmune® in rats. Pharm. Res. 38, 51–65 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. Lahiani-Skiba, M., Hallouard, F., Bounoure, F., Milon, N., Karrout, Y., Skiba, M.: Enhanced dissolution and oral bioavailability of Cyclosporine A: Microspheres based on αβ-Cyclodextrins polymers. Pharmaceutics. 10(4), 285 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huynh, N.A.K., Do, T.H.T., Le, X.L., Huynh, T.T.N., Nguyen, D.H., Tran, N.K., Tran, C.T.H.L., Nguyen, D.H., Truong, C.T.: Development of softgel capsules containing cyclosporine a encapsulated pine essential oil based self-microemulsifying drug delivery system. J. Drug Del. Sci. Tech. 68, 103115 (2022)

    Article  Google Scholar 

  31. Chaudhari, P., Birangal, S., Mavlankar, N., Pal, A., Mallela, L.S., Roy, S., Kodoth, A.K., Ghate, V., Nampoothiri, M., Lewis, S.A.: Oil-free eye drops containing cyclosporine A / cyclodextrin/PVA supramolecular complex as a treatment modality for dry eye disease. Carbohyd Pol. 297, 120007 (2022)

    Article  CAS  Google Scholar 

  32. Malaekeh-Nikouei, B., Nassirli, H., Davies, N.: Enhancement of cyclosporine aqueous solubility using α- and hydroxypropyl β-cyclodextrin mixtures. J. Incl. Phenom. Macrocycl. Chem. 59, 245–250 (2007)

    Article  CAS  Google Scholar 

  33. Higuchi, T., Connors, K.A.: Phase solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  34. Brewster, Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv Rev. 59, 645–666 (2007)

    Article  PubMed  Google Scholar 

  35. Suvarna, V., Thorat, S., Nayak, U., Sherje, A., Murahari, M.: Host-guest interaction study of Efavirenz with hydroxypropyl-β-cyclodextrin and L-arginine by computational simulation studies: Preparation and characterization of supramolecular complexes. J. Mol. Liq. 259, 55–64 (2018)

    Article  CAS  Google Scholar 

  36. Wang, D., Chen, G., Ren, L.: Preparation and characterization of the Sulfobutylether-β-Cyclodextrin inclusion complex of Amiodarone Hydrochloride with enhanced oral bioavailability in fasted state. AAPS Pharm. Sci. Tech. 18(5), 1526–1535 (2017)

    Article  CAS  Google Scholar 

  37. Mayank, P., Rajashree, H.: Multicomponent cyclodextrin system for improvement of solubility and dissolution rate of poorly water soluble drug. Asian J. Pharm. Sci. 14(1), 104–115 (2019)

    Article  Google Scholar 

  38. Shah, R.B., Tawakkul, M.A., Khan, M.A.: Comparative evaluation of flow for pharmaceutical powders and granules. AAPS Pharm. Sci. Tech. 9(1), 250–258 (2008)

    Article  CAS  Google Scholar 

  39. Goh, H.P., Heng, P.W.S., Liew, C.L.: Comparative evaluation of powder flow parameters with reference to particle size and shape. Int. J. Pharm. 547(1–2), 133–141 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Eid, E.E.M., Almaiman, A.A., Alshehade, S.A., Alsalemi, W., Kamran, S., Suliman, F.O.: Alshawsh. M. A. characterization of thymoquinone-Sulfobutylether-β-Cyclodextrin inclusion complex for Anticancer Applications. Molecules. 28(10), 4096 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marques, C.S.F., Barreto, N.S., Oliveira, S.S., Cd., Santos, A.L.S., Branquinha, M.H., Sousa, D., Pd., Castro, M., Andrade, L.N., Pereira, M.M., Silva, C.: Fd. β-Cyclodextrin/Isopentyl caffeate inclusion complex: Synthesis, characterization and antileishmanial activity. Molecules. 25(18), 4181 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Freitas, M.R., Rolim, L.A., Soares, M.F., Rolim-Neto, P.J., de Albuquerque, M.M., Soares-Sobrinho, J.L.: Inclusion complex of methyl-β-cyclodextrin and olanzapine as potential drug delivery system for schizophrenia. Carbohydr. Polym. 89, 1095–1100 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. Bajracharya, R., Song, J.G., Lee, S.H., Jeong, S.H., Han, H.K.: Enhanced oral bioavailability of mt-102, a new anti-inflammatory agent, via a ternary solid dispersion formulation. Pharmaceutics. 14, 1510 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vasconcelos, T., Prezotti, F., Araujo, F., Lopes, C., Loureiro, A., Marques, S., Sarmento, B.: Third-generation solid dispersion combining soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. Int. J. Pharm. 595, 120245 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. Bajracharya, R., Lee, S.H., Song, J.G., Kim, M., Lee, K., Han, H.K.: Development of a ternary solid dispersion formulation of LW6 to improve the in vivo activity as a BCRP inhibitor: Preparation and in vitro/in vivo characterization. Pharmaceutics. 11, 206 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, N.A., Oh, H.K., Lee, J.C., Choi, Y.H., Jeong, S.H.: Comparison of solubility enhancement by solid dispersion and micronized butein and its correlation with in vivo study. J. Pharm. Investig. 51, 53–60 (2021)

    Article  CAS  Google Scholar 

  47. Hirlekar, R.S., Sonawane, S.N., Kadam, V.J.: Studies on the effect of water-soluble polymers on drug-cyclodextrin complex solubility. AAPS Pharm. Sci. Tech. 10(3), 858–863 (2009)

    Article  CAS  Google Scholar 

  48. Lakshman, J.P., Cao, Y., Kowalski, J., Serajuddin, A.T.: Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 5(6), 994–1002 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. Furqan, A., Maulvi, Sonali, J., Dalwadi, Vaishali, T., Thakkar, T.G., Soni, M.C., Gohel, T.R., Gandhi: Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technol. 207(1–3), 47–54 (2011)

    Google Scholar 

  50. Lebrun, P., Krier, F., Mantanus, J.: Design space approach in the optimization of the spray-drying process. Eur. J. Pharm. Biopharm. 80(1), 226–234 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. Fesik, S.W., Gampe, R.T.J., Eaton, H.L., Gemmecker, G., Olejniczak, E.T., Neri, P., Holzman, T.F., Egan, D.A., Edalji, R., Simmer, R., et al.: NMR studies of [U-13 C] cyclosporin A bound to cyclophilin: Bound conformation and portions of cyclosporin involved in binding. Biochemistry. 30(26), 6574–6583 (1991)

    Article  CAS  PubMed  Google Scholar 

  52. Rolt, R., O’Neill, P.M., Liangc, T.J., Stachulsk, A.V.: Synthesis of MeBmt and related derivatives via syn selective ATH-DKR†. RSC Adv. 9, 40336–40339 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duttagupta, I., Ghosh, K.C., Sinha, S.: Synthetic studies toward nonribosomal peptides. Stud. Nat. Prod. Chem. 48, 29–64 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by the Princess Nourah Bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R108), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Sadaf Jamal Gilani: Conceptualization, Funding, Resources. Syed Sarim Imam: Experimental, Data curation. Raisuddin Ali: Characterization, Data curation, Writing of manuscript.

Corresponding author

Correspondence to Sadaf Jamal Gilani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilani, S.J., Imam, S.S. & Ali, R. Formulation and evaluation of multicomponent inclusion complex of cyclosporine A. J Incl Phenom Macrocycl Chem (2024). https://doi.org/10.1007/s10847-024-01225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10847-024-01225-5

Keywords

Navigation