Skip to main content
Log in

Extending the hydrophobic cavity of β-cyclodextrin results in more negative heat capacity changes but reduced binding affinities

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The formation of inclusion complexes of hydroxypropylated β-cyclodextrins (CDs) with three bile salts are investigated to shed light on the role played by the hydroxypropyl (HP) substituents. The HP-chains are situated at the rim of the CD and may thus extend the hydrophobic cavity of the CD. Calorimetric titrations in a broad temperature range and molecular dynamics simulations confirm previous speculations that the HP-chains cause an increase in dehydrated nonpolar surface area upon formation of the complexes. This additional burial of nonpolar surface area, 12–16 Å2 per HP-chain according to the MD simulations, results in more negative values of ΔC p °, which are in quantitative agreement with what is expected for hydrophobic dehydration. Although these observations support the picture of an extended hydrophobic cavity, HPβCD complexes were less stable than their unsubstituted counterparts. This indicates that increased hydrophobic contacts are not always accompanied by increased binding strength. The linear dependence of ΔC p °, ΔH° and ΔS° on the number of HP-chains give rise to isoentropic and isoenthalpic temperatures at which ΔH° and ΔS° are independent of the number of HP-chains on the host CD (but depend on the type of bile salt). Interestingly, these convergence temperatures are close to what is observed for unfolding of proteins and may be a common feature of hydrophobic dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Szejtli, J.: Cyclodextrin Technology. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  2. Szejtli, J.: Chemistry, physical and biological properties of cyclodextrins. In: Szejtli, J., Osa, T. (eds.) Cyclodextrins, pp. 189–204. Elsevier Science Ltd., Oxford (1996)

    Google Scholar 

  3. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  4. Dodziuk, H.: Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications. Wiley-VCH, Weinheim (2006)

    Book  Google Scholar 

  5. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)

    Article  CAS  Google Scholar 

  6. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  7. Maas, J., Kamm, W.H.G.: An integrated early formulation strategy—from hit evaluation to preclinical candidate profiling. Eur. J. Pharm. Sci. 66, 1–10 (2007)

    Google Scholar 

  8. Neervannan, S.: Preclinical formulation for discovery and toxicology: physicochemical challenges. Expert Opin. Drug Metab. Toxicol. 2, 715–731 (2006)

    Article  CAS  Google Scholar 

  9. Strickley, R.G.: Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21, 201–230 (2004)

    Article  CAS  Google Scholar 

  10. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  11. Loftsson, T., Brewster, M.E., Masson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2, 175–261 (2004)

    Article  Google Scholar 

  12. Castronuovo, G., Niccoli, M., Varriale, L.: Complexation forces in aqueous solution. Calorimetric studies of the association of 2-hydroxypropyl-beta-cyclodextrin with monocarboxylic acids or cycloalkanols. Tetrahedron 63, 7047–7052 (2007)

    Article  CAS  Google Scholar 

  13. Veiga, M.D., Merino, M., Cirri, M., Maestrelli, F., Mura, P.: Comparative study on triclosan interactions in solution and in the solid state with natural and chemically modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 53, 77–83 (2005)

    Article  CAS  Google Scholar 

  14. Castronuovo, G., Niccoli, M.: The cavity elongation effect. Calorimetric studies of the complexes of long-chain carboxylic acids with methyl-α-cyclodextrin in aqueous solutions. J. Incl. Phenom. Macrocycl. Chem. 58, 289–294 (2007)

    Article  CAS  Google Scholar 

  15. Zia, V., Rajewski, R.A., Stella, V.J.: Thermodynamics of binding of neutral molecules to sulfobutyl ether β-cyclodextrins (SBE-β-CDs): the effect of total degree of substitution. Pharm. Res. 17, 936–941 (2000)

    Article  CAS  Google Scholar 

  16. Blach, P., Landy, D., Fourmentin, S., Surpateanu, G., Bricout, H., Ponchel, A., Hapiot, F., Monflier, E.: Sulfobutyl ether-beta-cyclodextrins: promising supramolecular carriers for aqueous organometallic catalysis. Adv. Synth. Catal. 347, 1301–1307 (2005)

    Article  CAS  Google Scholar 

  17. Gomez-Biagi, R.F., Jagt, R.B.C., Nitz, M.: Remarkably stable inclusion complexes with heptakis-[6-deoxy-6-(2-aminoethylsulfanyl)]-beta-cyclodextrin. Org. Biomol. Chem. 6, 4622–4626 (2008)

    Article  CAS  Google Scholar 

  18. Schönbeck, C., Westh, P., Madsen, J.C., Larsen, K.L., Städe, L.W., Holm, R.: Hydroxypropyl substituted β-cyclodextrins: influence of degree of substitution on the thermodynamics of complexation with tauro- and glyco-conjugated bile salts. Langmuir 26, 17949–17957 (2010)

    Article  Google Scholar 

  19. Myers, J.K., Pace, C.N., Scholtz, J.M.: Denaturant M-values and heat-capacity changes—relation to changes in accessible surface-areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995)

    Article  CAS  Google Scholar 

  20. Spolar, R.S., Livingstone, J.R., Record, M.T.: Use of liquid-hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 31, 3947–3955 (1992)

    Article  CAS  Google Scholar 

  21. Garidel, P., Hildebrand, A., Neubert, R., Blume, A.: Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry. Langmuir 16, 5267–5275 (2000)

    Article  Google Scholar 

  22. Ross, P.D., Rekharsky, M.V.: Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys. J. 71, 2144–2154 (1996)

    Article  CAS  Google Scholar 

  23. Olvera, A., Perez-Casas, S., Costas, M.: Heat capacity contributions to the formation of inclusion complexes. J. Phys. Chem. B 111, 11497–11505 (2007)

    Article  CAS  Google Scholar 

  24. Holm, R., Shi, W., Hartvig, R.A., Askjær, S., Madsen, J.C., Westh, P.: Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and β-cyclodextrins. Phys. Chem. Chem. Phys. 11, 5070–5078 (2009)

    Article  CAS  Google Scholar 

  25. Roda, A., Hofmann, A.F., Mysels, K.J.: The influence of bile salt structure on self-association in aqueous solutions. J. Biol. Chem. 258, 6362–6370 (1983)

    CAS  Google Scholar 

  26. Schönbeck, C., Holm, R., Westh, P.: Higher order inclusion complexes and secondary interactions studied by global analysis of calorimetric titrations. Anal. Chem. 84, 2305–2312 (2012)

    Article  Google Scholar 

  27. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  28. bcdtest.inp file in the CHARMM package: Chemistry at Harvard macromolecular mechanics (CHARMM)—Developmental Version 31b2 (2005). (http://www.charmm.org/package/releases.html). Accessed 15 Feb 2005

  29. Pan, Y.H., Bahnson, B.J.: Structural basis for bile salt inhibition of pancreatic phospholipase A2. J. Mol. Biol. 369, 439–450 (2007)

    Article  CAS  Google Scholar 

  30. Chatterjee, S., Zhong, D.L., Nordhues, B.A., Battaile, K.P., Lovell, S., De Guzman, R.N.: The crystal structures of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate. Protein Sci. 20, 75–86 (2011)

    Article  CAS  Google Scholar 

  31. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  32. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  Google Scholar 

  33. Vorobyov, I., Anisimov, V.M., Greene, S., Venable, R.M., Moser, A., Pastor, R.W., MacKerell, A.D.: Additive and classical drude polarizable force fields for linear and cyclic ethers. J. Chem. Theory Comput. 3, 1120–1133 (2007)

    Article  CAS  Google Scholar 

  34. Feller, S.E., Zhang, Y.H., Pastor, R.W., Brooks, B.R.: Constant-pressure molecular-dynamics simulation—the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995)

    Article  CAS  Google Scholar 

  35. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald—an N. Log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  36. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  CAS  Google Scholar 

  37. Cabrer, P.R., Alvarez-Parrilla, E., Al-Soufi, W., Meijide, F., Núñez, E.R., Tato, J.V.: Complexation of bile salts by natural cyclodextrins. Supramol. Chem. 15, 33–43 (2003)

    Article  Google Scholar 

  38. Mucci, A., Schenetti, L., Vandelli, M.A., Ruozi, B., Salvioli, G., Forni, F.: Comparison between Roesy and 13C NMR complexation shifts in deriving the geometry of inclusion compounds: a study on the interaction between hyodeoxycholic acid and 2-hydroxypropyl-β-cyclodextrin. Supramol. Chem. 12, 427–433 (2001)

    Article  CAS  Google Scholar 

  39. Schönbeck, C., Westh, P., Madsen, J.C., Larsen, K.L., Stade, L.W., Holm, R.: Methylated beta-cyclodextrins: influence of degree and pattern of substitution on the thermodynamics of complexation with tauro- and glyco-conjugated bile salts. Langmuir 27, 5832–5841 (2011)

    Article  Google Scholar 

  40. Holm, R., Madsen, J.C., Shi, W., Larsen, K.L., Städe, L.W., Westh, P.: Thermodynamics of complexation of tauro- and glyco-conjugated bile salts with two modified β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 69, 201–211 (2011)

    Article  CAS  Google Scholar 

  41. Harata, K., Rao, C.T., Pitha, J., Fukunaga, K., Uekama, K.: Crystal-structure of 2-O-[(S)-2-hydroxypropyl]cyclomaltoheptaose. Carbohydr. Res. 222, 37–45 (1991)

    Article  CAS  Google Scholar 

  42. Harata, K., Rao, C.T., Pitha, J.: Crystal-structure of 6–0-[(R)-2-hydroxypropyl]cyclomaltoheptaose and 6–0-[(S)-2-hydroxypropyl]cyclomaltoheptaose. Carbohydr. Res. 247, 83–98 (1993)

    Article  CAS  Google Scholar 

  43. Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 62, 539–547 (1966)

    Article  CAS  Google Scholar 

  44. Bates, D.M., Watts, D.G.: Nonlinear Regression Analysis and Its Applications. Wiley, New York (2007)

    Google Scholar 

  45. Tan, Z.J., Zhu, X.X., Brown, G.R.: Formation of inclusion complexes of cyclodextrins with bile salt anions as determined by NMR titration studies. Langmuir 10, 1034–1039 (1994)

    Article  CAS  Google Scholar 

  46. Pitha, J., Rao, C.T., Lindberg, B., Seffers, P.: Distribution of substituents in 2-hydroxypropyl ethers of cyclomaltoheptaose. Carbohydr. Res. 200, 429–435 (1990)

    Article  CAS  Google Scholar 

  47. Rao, C.T., Pitha, J., Lindberg, B., Lindberg, J.: Distribution of substituents in O-(2-hydroxypropyl) derivatives of cyclomalto-oligosaccharides (cyclodextrins): influence of increasing substitution, of the base use in the preparation, and of macrocyclic size. Carbohydr. Res. 223, 99–107 (1992)

    Article  CAS  Google Scholar 

  48. Naghibi, H., Dec, S.F., Gill, S.J.: Heats of solution of ethane and propane in water from 0°C to 50°C. J. Phys. Chem. 91, 245–248 (1987)

    Article  CAS  Google Scholar 

  49. Cameron, D.L., Jakus, J., Pauleta, S.R., Pettigrew, G.W., Cooper, A.: Pressure perturbation calorimetry and the thermodynamics of noncovalent interactions in water: comparison of protein–protein, protein–ligand, and cyclodextrin–adamantane complexes. J. Phys. Chem. B 114, 16228–16235 (2010)

    Article  CAS  Google Scholar 

  50. Cabani, S., Gianni, P., Mollica, V., Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous-solution. J. Solut. Chem. 10, 563–595 (1981)

    Article  CAS  Google Scholar 

  51. Gallicchio, E., Kubo, M.M., Levy, R.M.: Enthalpy–entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B 104, 6271–6285 (2000)

    Article  CAS  Google Scholar 

  52. Heerklotz, H., Epand, R.M.: The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids. Biophys. J. 80, 271–279 (2001)

    Article  CAS  Google Scholar 

  53. Costas, M., Kronberg, B., Silveston, R.: General thermodynamic analysis of the dissolution of nonpolar molecules into water—origin of hydrophobicity. J. Chem. Soc. Faraday Trans. 90, 1513–1522 (1994)

    Article  CAS  Google Scholar 

  54. Connelly, P.R., Thomson, J.A.: Heat-capacity changes and hydrophobic interactions in the binding of Fk506 and rapamycin to the Fk506 binding-protein. Proc. Natl. Acad. Sci. USA 89, 4781–4785 (1992)

    Article  CAS  Google Scholar 

  55. Zangi, R., Berne, B.J.: Temperature dependence of dimerization and dewetting of large-scale hydrophobes: a molecular dynamics study. J. Phys. Chem. B 112, 8634–8644 (2008)

    Article  CAS  Google Scholar 

  56. Plyasunov, A.V., Shock, E.L.: Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa. Geochim. Cosmochim. Acta 64, 439–468 (2000)

    Article  CAS  Google Scholar 

  57. Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    Article  CAS  Google Scholar 

  58. Murphy, K.P., Privalov, P.L., Gill, S.J.: Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247, 559–561 (1990)

    Article  CAS  Google Scholar 

  59. Privalov, P.L.: Stability of proteins small globular proteins. In: Anfinsen, C.B. (ed.) Advances in Protein Chemistry, pp. 167–241. Academic Press, New York (1979)

  60. Baldwin, R.L.: Temperature-dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. USA 83, 8069–8072 (1986)

    Article  CAS  Google Scholar 

  61. Lee, B.: Isoenthalpic and isoentropic temperatures and the thermodynamics of protein denaturation. Proc. Natl. Acad. Sci. USA 88, 5154–5158 (1991)

    Article  CAS  Google Scholar 

  62. Murphy, K.P.: Hydration and convergence temperatures—on the use and interpretation of correlation plots. Biophys. Chem. 51, 311–326 (1994)

    Article  CAS  Google Scholar 

  63. Liu, L., Yang, C., Guo, Q.X.: A study on the enthalpy–entropy compensation in protein unfolding. Biophys. Chem. 84, 239–251 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the Danish Center for Scientific Computing (DCSC) at the University of Southern Denmark for granting access to their computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Holm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 950 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönbeck, C., Holm, R., Westh, P. et al. Extending the hydrophobic cavity of β-cyclodextrin results in more negative heat capacity changes but reduced binding affinities. J Incl Phenom Macrocycl Chem 78, 351–361 (2014). https://doi.org/10.1007/s10847-013-0305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0305-2

Keywords

Navigation