Skip to main content
Log in

Asymptotically Optimal Path Planning for Robotic Manipulators: Multi-Directional, Multi-Tree Approach

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a novel algorithm – RGBMT* (Rapidly-exploring Generalized Bur Multi-Tree star), intended for asymptotically optimal motion planning for robotic manipulators in static environments. The main idea is the generation of local/extra trees rooted in random configurations, beside two main trees rooted in initial and goal configurations. Each local tree is expanded towards all other trees via bur of free configuration space (\(\mathcal {C}\)-space). Each node is assigned a cost-to-come value, which is then used to optimally connect (if possible) all nodes from local trees to a single main tree according to Bellman’s principle of optimality. The algorithm is provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost-surely to the optimum. Main and local trees are aptly grown in order to prevent exploring \(\mathcal {C}\)-space in regions which are unlikely to yield solutions. A comprehensive simulation study is performed analyzing runtimes and convergence rate, where RGBMT* is compared to state-of-the-art algorithms. Obtained results indicate some promising features of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code Availability

The code is available online at https://github.com/roboticsETF/RPMPLv2.git.

References

  1. Bahrin, M.A.K., Othman, M.F., Azli, N.H.N., Talib, M.F.: Industry 4.0: A review on industrial automation and robotic. Jurnal teknologi 78(6–13) (2016)

  2. Sheridan, T.B.: Human robot interaction: status and challenges. Hum. Factors 58(4), 525–532 (2016)

    Article  Google Scholar 

  3. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. J. Guid. Control Dyn. 25(1), 116–129 (2002)

    Article  Google Scholar 

  4. Bosscher, P., Hedman, D.: Real-time collision avoidance algorithm for robotic manipulators. Industrial Robot: An International Journal (2011)

  5. Urmson, C., Simmons, R.: Approaches for heuristically biasing RRT growth. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 2, pp. 1178–1183 (2003). IEEE

  6. Ferguson, D., Stentz, A.: Anytime RRTs. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5369-5375 (2006). IEEE

  7. Ferguson, D., Stentz, A.: Anytime, dynamic planning in high-dimensional search spaces. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1310-1315 (2007). IEEE

  8. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning (1998)

  9. Kuner, J.J., LaValle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2, pp. 995-1001 (2000). IEEE

  10. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010)

    Article  Google Scholar 

  11. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. Advances in neural information processing systems 16, 767–774 (2003)

    Google Scholar 

  12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  13. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. The international journal of robotics research 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  14. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  15. Osmanković, D., Lačević, B.: Rapidly exploring bur trees for optimal motion planning. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002085–002090 (2016). IEEE

  16. Covic, N., Lacevic, B., Osmankovic, D.: Path planning for robotic manipulators in dynamic environments using distance information. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4708-4713 (2021). IEEE

  17. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions. The Int. J. Robot. Res. 34(7), 883–921 (2015)

    Article  Google Scholar 

  18. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Salzman, O., Halperin, D.: Asymptotically-optimal motion planning using lower bounds on cost. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4167-4172 (2015). IEEE

  20. Wu, Z., Chen, Y., Liang, J., He, B., Wang, Y.: ST-FMT*: A fast optimal global motion planning for mobile robot. IEEE Trans. Ind. Electron. 69(4), 3854–3864 (2021)

    Article  Google Scholar 

  21. Karaman, S., Walter, M.R., Perez, A., Frazzoli, E., Teller, S.: Anytime motion planning using the RRT*. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1478-1483 (2011). IEEE

  22. Alterovitz, R., Patil, S., Derbakova, A.: Rapidly-exploring roadmaps: Weighing exploration vs. refinement in optimal motion planning. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3706-3712 (2011). IEEE

  23. Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high dimensions. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2640-2645 (2011). IEEE

  24. Naderi, K., Rajamäki, J., Hämäläinen, P.: RT-RRT* A real-time path planning algorithm based on RRT. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, pp. 113-118 (2015)

  25. Chandler, B., Goodrich, M.A.: Online RRT* and Online FMT*: Rapid replanning with dynamic cost. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6313-6318 (2017). IEEE

  26. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-based algorithms for optimal motion planning. In: 2013 IEEE International Conference on Robotics and Automation, pp. 2421-2428 (2013). IEEE

  27. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artif. Intell. 155(1–2), 93–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Otte, M., Frazzoli, E.: RRTx: Asymptotically optimal single-query sampling-based motion planning with quick replanning. The Int. J. Robot. Res. 35(7), 797–822 (2016)

    Article  Google Scholar 

  29. Gammell, J.D., Barfoot, T.D., Srinivasa, S.S.: Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search. The Int. J. Robot. Res. 39(5), 543–567 (2020)

    Article  Google Scholar 

  30. Penrose, M.: Random geometric graphs. OUP Oxford (2003)

  31. Strub, M.P., Gammell, J.D.: Adaptively Informed Trees (AIT*): Fast asymptotically optimal path planning through adaptive heuristics. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3191–3198 (2020). IEEE

  32. Strandberg, M.: Augmenting RRT-planners with local trees. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 4, pp. 3258–3262 (2004). IEEE

  33. Wang, W., Zuo, L., Xu, X.: A learning-based multi-RRT approach for robot path planning in narrow passages. J. Intell. Robot. Syst. 90(1), 81–100 (2018)

    Article  Google Scholar 

  34. Lai, T., Ramos, F.: Adaptively exploits local structure with generalised multi-trees motion planning. IEEE Robotics and Automation Letters (2021)

  35. Devaurs, D., Siméon, T., Cortés, J.: A multi-tree extension of the Transition-based RRT: Application to ordering-and-pathfinding problems in continuous cost spaces. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2991–2996 (2014). IEEE

  36. Wong, C., Yang, E., Yan, X.-T., Gu, D.: Optimal path planning based on a multi-tree T-RRT* approach for robotic task planning in continuous cost spaces. In: 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, pp. 242-247 (2018). IEEE

  37. Devaurs, D., Siméon, T., Cortés, J.: Optimal path planning in complex cost spaces with sampling-based algorithms. IEEE Trans. Autom. Sci. Eng. 13(2), 415–424 (2015)

    Article  Google Scholar 

  38. Qian, K., Liu, Y., Tian, L., Bao, J.: Robot path planning optimization method based on heuristic multi-directional rapidly-exploring tree. Comput. Electr. Eng. 85, 106688 (2020)

    Article  Google Scholar 

  39. Huang, J.-K., Tan, Y., Lee, D., Desaraju, V.R., Grizzle, J.W.: Informable multi-objective and multi-directional RRT* system for robot path planning. arXiv preprint arXiv:2205.14853 (2022)

  40. Sun, Z., Wang, J., Meng, M.Q.-H.: Multi-tree guided efficient robot motion planning. arXiv preprint arXiv:2205.04847 (2022)

  41. Lacevic, B., Osmankovic, D., Ademovic, A.: Burs of free C-space: A novel structure for path planning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 70–76 (2016). IEEE

  42. Lacevic, B., Osmankovic, D.: Improved C-space exploration and path planning for robotic manipulators using distance information. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), (2020). IEEE

  43. Sedgewick, R.: Algorithms in C++, parts 1-4: Fundamentals, data structure, sorting, searching. Pearson Education (1998)

  44. Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6), 503–515 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vazquez-Leal, H., Marin-Hernandez, A., Khan, Y., Yildirim, A., Filobello-Nino, U., Castañeda-Sheissa, R., Jimenez-Fernandez, V.M.: Exploring collision-free path planning by using homotopy continuation methods. Appl. Math. Comput. 219(14), 7514–7532 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Yi, D., Goodrich, M.A., Seppi, K.D.: Homotopy-aware RRT: Toward human-robot topological path-planning. In: 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 279–286 (2016). IEEE

  47. Kolur, K., Chintalapudi, S., Boots, B., Mukadam, M.: Online motion planning over multiple homotopy classes with gaussian process inference. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2358-2364 (2019). IEEE

  48. Solovey, K., Janson, L., Schmerling, E., Frazzoli, E., Pavone, M.: Revisiting the asymptotic optimality of RRT. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2189–2195 (2020). IEEE

  49. Salzman, O., Halperin, D.: Asymptotically near-optimal RRT for fast, high-quality motion planning. IEEE Trans. Robot. 32(3), 473–483 (2016)

    Article  Google Scholar 

  50. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2997-3004 (2014). IEEE

  51. Moll, M., Sucan, I.A., Kavraki, L.E.: Benchmarking motion planning algorithms: An extensible infrastructure for analysis and visualization. IEEE Robot. Autom. Mag. 22(3), 96102 (2015). https://doi.org/10.1109/MRA.2015.2448276

    Article  Google Scholar 

  52. Lacevic, B., Osmankovic, D.: Path planning for rigid bodies using burs of free C-space. IFAC-PapersOnLine 51(22), 280–285 (2018)

    Article  Google Scholar 

Download references

Funding

This work has been supported by Ministry of education and science of Canton Sarajevo, grant no. 11-05-14-27164-1/19.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work equally. Material preparation was done by Nermin Covic and Bakir Lacevic, while code writing, data collection and analysis were performed by Nermin Covic and Dinko Osmankovic. The first draft of the manuscript was written by Nermin Covic, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nermin Covic.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dinko Osmankovic and Bakir Lacevic contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Covic, N., Osmankovic, D. & Lacevic, B. Asymptotically Optimal Path Planning for Robotic Manipulators: Multi-Directional, Multi-Tree Approach. J Intell Robot Syst 109, 14 (2023). https://doi.org/10.1007/s10846-023-01893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01893-4

Keywords

Navigation