Skip to main content

Trajectory Planning

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Trajectory planning consists in finding a time series of successive joint angles that allows moving a robot from a starting configuration towards a goal configuration, in order to achieve a task, such as grabbing an object from a conveyor belt and placing it on a shelf. This trajectory must respect given constraints: for instance, the robot should not collide with the environment; the joint angles, velocities, accelerations, or torques should be within specified limits, etc. Next, if several trajectories are possible, one should choose the one that optimizes a certain objective, such as the trajectory execution time or energy consumption. This chapter reviews methods to plan trajectories with constraints and optimization objectives relevant to industrial robot manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bobrow J (1988) Optimal robot plant planning using the minimum-time criterion. IEEE J Robot Autom 4(4):443–450

    Article  Google Scholar 

  • Bobrow J, Dubowsky S, Gibson J (1985) Time-optimal control of robotic manipulators along specified paths. Int J Robot Res 4(3):3–17

    Article  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MATH  MathSciNet  Google Scholar 

  • Donald B, Xavier P, Canny J, Reif J (1993) Kinodynamic motion planning. J Assoc Comput Mach 40(5):1048–1066

    Article  MATH  MathSciNet  Google Scholar 

  • Geering HP, Guzzella L, Hepner SA, Onder CH (1985) Time-optimal motions of robots in assembly tasks. In: Proceedings of the 24th IEEE conference on decision and control, vol 24. IEEE, Fort Lauderdale, pp 982–989

    Google Scholar 

  • Geraerts R, Overmars M (2007) Creating high-quality paths for motion planning. Int J Robot Res 26(8):845–863

    Article  Google Scholar 

  • Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  • Hauser K (2013) Fast interpolation and time-optimization on implicit contact submanifolds. In: Proceedings of the robotics: science and systems, Berlin, 2013

    Google Scholar 

  • Hauser K, Ng-Thow-Hing V (2010) Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. In: Proceedings of the IEEE international conference on robotics and automation, 2010. Anchorage, pp 2493–2498

    Google Scholar 

  • Hsu D, Kindel R, Latombe J-C, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255

    Article  Google Scholar 

  • Hwang YK, Ahuja N (1992) Gross motion planning – a survey. ACM Comput Surv (CSUR) 24(3):219–291

    Article  Google Scholar 

  • Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894

    Article  Google Scholar 

  • Kavraki L, Svestka P, Latombe J, Overmars M (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

    Article  Google Scholar 

  • Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98

    Article  MathSciNet  Google Scholar 

  • Kuffner J, LaValle S (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, San Francisco, 2000

    Google Scholar 

  • Kuffner J, Kagami S, Nishiwaki K, Inaba M, Inoue H (2002) Dynamically-stable motion planning for humanoid robots. Auton Robot 12(1):105–118

    Article  MATH  Google Scholar 

  • Kunz T, Stilman M (2012) Time-optimal trajectory generation for path following with bounded acceleration and velocity. Robot Sci Syst 8:09–13

    Google Scholar 

  • Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical report 98–11, Iowa State University

    Google Scholar 

  • LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • LaValle S, Kuffner J (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400

    Article  Google Scholar 

  • LaValle SM, Branicky MS, Lindemann SR (2004) On the relationship between classical grid search and probabilistic roadmaps. Int J Robot Res 23(7–8):673–692

    Article  Google Scholar 

  • Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100(2):108–120

    Article  MathSciNet  Google Scholar 

  • Meier E-B, Ryson AE (1990) Efficient algorithm for time-optimal control of a two-link manipulator. J Guid Control Dyn 13(5):859–866

    Article  MATH  Google Scholar 

  • Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot Autom 3(2):115–123

    Article  Google Scholar 

  • Pham Q-C (2012) Planning manipulator trajectories under dynamics constraints using minimum-time shortcuts. In: Proceedings of the second IFToMM ASIAN conference on mechanism and machine science, Tokyo, 2012

    Google Scholar 

  • Pham Q-C (2013) Characterizing and addressing dynamic singularities in the time-optimal path parameterization algorithm. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Tokyo, 2013

    Google Scholar 

  • Pham Q-C, Caron S, Nakamura Y (2013) Kinodynamic planning in the configuration space via velocity interval propagation. In: Proceedings of the robotics: science and system, Berlin, 2013

    Google Scholar 

  • Shiller Z, Dubowsky S (1989) Robot path planning with obstacles, actuator, gripper, and payload constraints. Int J Robot Res 8(6):3–18

    Article  Google Scholar 

  • Shiller Z, Dubowsky S (1991) On computing the global time-optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797

    Article  Google Scholar 

  • Shiller Z, Gwo Y (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans Robot Autom 7(2):241–249

    Article  Google Scholar 

  • Shiller Z, Lu H (1992) Computation of path constrained time optimal motions with dynamic singularities. J Dyn Syst Meas Control 114:34

    Article  MATH  Google Scholar 

  • Shin K, McKay N (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control 30(6):531–541

    Article  MATH  Google Scholar 

  • Slotine J, Yang H (1989) Improving the efficiency of time-optimal path-following algorithms. IEEE Trans Robot Autom 5(1):118–124

    Article  Google Scholar 

  • Verscheure D, Demeulenaere B, Swevers J, De Schutter J, Diehl M (2009) Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans Autom Control 54(10):2318–2327

    Article  Google Scholar 

  • Yang H, Slotine J (1994) Fast algorithms for near-minimum-time control of robot manipulators. Int J Robot Res 13(6):521–532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang-Cuong Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Pham, QC. (2014). Trajectory Planning. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_92-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_92-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics