Skip to main content
Log in

MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot System (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or data availability

The authors declare that the data supporting the findings of this study are available within the MRS software link (https://github.com/ctu-mrs/mrs_uav_system) and MRS Drone Builder link (https://dronebuilder.fly4future.com/).

References

  1. Ahmad, A., Bonilla Licea, D., Silano, G., Baca, T., Saska, M.: PACNav: A Collective Navigation Approach for UAV Swarms Deprived of Communication and External Localization. Bioinspiration & Biomimetics 17, 6 (2022). DOI: https://doi.org/10.1088/1748-3190/ac98e6.https://iopscience.iop.org/article/10.1088/1748-3190/ac98e6

  2. Ahmad, A., Walter, V., Petracek, P., Petrlik, M., Baca, T., Zaitlik, D., Saska, M.: Autonomous Aerial Swarming in GNSS-denied Environments with High Obstacle Density. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 570–576 (2021). https://doi.org/10.1109/ICRA48506.2021.9561284. https://ieeexplore.ieee.org/document/9561284

  3. Ahmed, S., Kallu, K.D., Ahmed, S., Cho, S.H.: Hand Gestures Recognition Using Radar Sensors for Human-Computer-Interaction: A Review. Remote Sensing 13, 527 (2021). https://doi.org/10.3390/rs13030527.https://www.mdpi.com/2072-4292/13/3/527

  4. Amorim, T., Nascimento, T., Petracek, P., de Masi, G., Ferrante, E., Saska, M.: Self-Organized UAV Flocking Based on Proximal Control. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1374–1382 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476847. https://ieeexplore.ieee.org/document/9476847

  5. Antonini, A., Guerra, W., Murali, V., Sayre-McCord, T., Karaman, S.: The blackbird uav dataset. The International Journal of Robotics Research 39(10–11), 1346–1364 (2020). DOI: https://doi.org/10.1177/0278364920908331.https://journals.sagepub.com/doi/abs/10.1177/0278364920908331?journalCode=ijra

  6. Baca, T., Hert, D., Loianno, G., Saska, M., Kumar, V.: Model Predictive Trajectory Tracking and Collision Avoidance for Reliable Outdoor Deployment of Unmanned Aerial Vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8 (2018). https://doi.org/10.1109/IROS.2018.8594266. https://ieeexplore.ieee.org/document/8594266

  7. Baca, T., Jilek, M., Vertat, I., Urban, M., Nentvich, O., Filgas, R., Granja, C., Inneman, A., Daniel, V.: Timepix in LEO Orbit onboard the VZLUSAT-1 Nanosatellite: 1-year of Space Radiation Dosimetry Measurements. Journal of Instrumentation 13(11), C11010 (2018). DOI: https://doi.org/10.1088/1748-0221/13/11/C11010.https://iopscience.iop.org/article/10.1088/1748-0221/13/11/C11010

  8. Baca, T., Jilek, M., et al.: Timepix Radiation Detector for Autonomous Radiation Localization and Mapping by Micro Unmanned Vehicles. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1129–1136 (2019). https://doi.org/10.1109/IROS40897.2019.8968514. https://ieeexplore.ieee.org/document/8968514

  9. Baca, T., Penicka, R., Stepan, P., Petrlik, M., Spurny, V., Hert, D., Saska, M.: Autonomous Cooperative Wall Building by a Team of Unmanned Aerial Vehicles in the MBZIRC 2020 Competition (2020). https://doi.org/10.48550/arXiv.2012.05946. https://arxiv.org/abs/2012.05946. Submitted To Robotics and Autonomous Systems

  10. Baca, T., Petrlik, M., Vrba, M., Spurny, V., Penicka, R., Hert, D., Saska, M.: The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles. Journal of Intelligent & Robotic Systems 102(26), 1–28 (2021). DOI: https://doi.org/10.1007/s10846-021-01383-5.https://link.springer.com/article/10.1007/s10846-021-01383-5

  11. Baca, T., Stepan, P., Spurny, V., Hert, D., Penicka, R., Saska, M., Thomas, J., Loianno, G., Kumar, V.: Autonomous Landing on a Moving Vehicle with an Unmanned Aerial Vehicle. Journal of Field Robotics 36, 874–891 (2019). DOI: https://doi.org/10.1002/rob.21858.https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21858

  12. Baca, T., Stibinger, P., Doubravova, D., Turecek, D., Solc, J., Rusnak, J., Saska, M., Jakubek, J.: Gamma Radiation Source Localization for Micro Aerial Vehicles with a Miniature Single-Detector Compton Event Camera. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 338–346 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476766. https://ieeexplore.ieee.org/document/9476766

  13. Baca, T., Turecek, D., McEntaffer, R., Filgas, R.: Rospix: modular software tool for automated data acquisitions of Timepix detectors on Robot Operating System. Journal of Instrumentation 13(11), C11008 (2018). DOI: https://doi.org/10.1088/1748-0221/13/11/C11008.https://iopscience.iop.org/article/10.1088/1748-0221/13/11/C11008

  14. Bednar, J., Petrlik, M., Teixeira Vivaldini, K.C., Saska, M.: Deployment of Reliable Visual Inertial Odometry Approaches for Unmanned Aerial Vehicles in Real-world Environment. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 167–176 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836067. https://ieeexplore.ieee.org/document/9836067

  15. Bondyra, A., Gardecki, S., Gasior, P., Giernacki, W.: Performance of Coaxial Propulsion in Design of Multi-rotor UAVs. In: International Conference on Automation, pp. 523–531 (2016). https://doi.org/10.1007/978-3-319-29357-8_46. https://link.springer.com/chapter/10.1007/978-3-319-29357-8_46

  16. Bonilla Licea, D., Ghogho, M., Saska, M.: When Robotics Meets Wireless Communications: An Introductory Tutorial (2022). https://doi.org/10.48550/arXiv.2209.02021. https://arxiv.org/abs/2209.02021. Submitted To IEEE Proceedings

  17. Bonilla Licea, D., Silano, G., Ghogho, M., Saska, M.: Optimum Trajectory Planning for Multi-Rotor UAV Relays with Tilt and Antenna Orientation Variations. In: European Signal Processing Conference (EUSIPCO), pp. 1586–1590 (2021). https://doi.org/10.23919/EUSIPCO54536.2021.9616232. https://ieeexplore.ieee.org/document/9616232

  18. Bonilla Licea, D., Walter, V., Ghogho, M., Saska, M.: Optical communication-based identification for multi-UAV systems: theory and practice (2022). https://doi.org/10.48550/arXiv.2302.04770. https://arxiv.org/abs/2302.04770. Submitted To IEEE Transactions on Robotics

  19. Brandao, A.S., Smrcka, D., Pairet, E., Nascimento, T., Saska, M.: Side-Pull Maneuver: A Novel Control Strategy for Dragging a Cable-Tethered Load of Unknown Weight Using a UAV. IEEE Robotics and Automation Letters 7(4), 9159–9166 (2022). DOI: https://doi.org/10.1109/LRA.2022.3190092.https://ieeexplore.ieee.org/document/9827488

  20. Caballero, A., Silano, G.: A Signal Temporal Logic Motion Planner for Bird Diverter Installation Tasks with Multi-Robot Aerial Systems (2022). https://doi.org/10.48550/arXiv.2210.09750. https://arxiv.org/abs/2210.09750. Submitted To Autonomous Robots

  21. Calvo, A., Silano, G., Capitan, J.: Mission Planning and Execution in Heterogeneous Teams of Aerial Robots supporting Power Line Inspection Operations. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1644–1649 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836234. https://ieeexplore.ieee.org/document/9836234

  22. Cataffo, V., Silano, G., Iannelli, L., Puig, V., Glielmo, L.: A Nonlinear Model Predictive Control Strategy for Autonomous Racing of Scale Vehicles. In: 2022 IEEE International Conference on Systems, Man, and Cybernetics, pp. 100–105 (2022). https://doi.org/10.1109/SMC53654.2022.9945279. https://ieeexplore.ieee.org/document/9945279

  23. Chaudhary, A., Nascimento, T., Saska, M.: Controlling a Swarm of Unmanned Aerial Vehicles Using Full-Body k-Nearest Neighbor Based Action Classifier. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 544–551 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836097. https://ieeexplore.ieee.org/document/9836097

  24. Christie, G., Shoemaker, A., Kochersberger, K., Tokekar, P., McLean, L., Leonessa, A.: Radiation search operations using scene understanding with autonomous UAV and UGV. Journal of Field Robotics 34(8), 1450–1468 (2017). DOI: https://doi.org/10.1002/rob.21723.https://onlinelibrary.wiley.com/doi/10.1002/rob.21723

  25. Coppola, M., McGuire, K.N., De Wagter, C., de Croon, G.C.H.E.: A Survey on Swarming With Micro Air Vehicles: Fundamental Challenges and Constraints. Frontiers in Robotics and AI 7 (2020). https://doi.org/10.3389/frobt.2020.00018.https://www.frontiersin.org/articles/10.3389/frobt.2020.00018/full

  26. Demkiv, L., Ruffo, M., Silano, G., Bednar, J., Saska, M.: An Application of Stereo Thermal Vision for Preliminary Inspection of Electrical Power Lines by MAVs. In: Aerial Robotic Systems Physically Interacting with the Environment, pp. 1–8 (2021). https://doi.org/10.1109/AIRPHARO52252.2021.9571025. https://ieeexplore.ieee.org/document/9571025

  27. Dmytruk, A., Nascimento, T., Ahmad, A., Báča, T., Saska, M.: Safe Tightly-Constrained UAV Swarming in GNSS-denied Environments. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1391–1399 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476794. https://ieeexplore.ieee.org/document/9476794

  28. Dmytruk, A., Silano, G., Bicego, D., Bonilla Licea, D., Saska, M.: A Perception-Aware NMPC for Vision-Based Target Tracking and Collision Avoidance with a Multi-Rotor UAV. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1668–1673 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836071. https://ieeexplore.ieee.org/document/9836071

  29. Ebadi, K., Bernreiter, L., Biggie, H., Catt, G., Chang, Y., Chatterjee, A., Denniston, C.E., Deschênes, S.P., Harlow, K., Khattak, S., Nogueira, L., Palieri, M., Petráček, P., Petrlík, M., Reinke, A., Krátký, V., Zhao, S., Agha-mohammadi, A.a., Alexis, K., Heckman, C., Khosoussi, K., Kottege, N., Morrell, B., Hutter, M., Pauling, F., Pomerleau, F., Saska, M., Scherer, S., Siegwart, R., Williams, J.L., Carlone, L.: Present and Future of SLAM in Extreme Underground Environments (2022). https://doi.org/10.48550/arXiv.2208.01787. https://arxiv.org/abs/2208.01787. Submitted to IEEE Transactions on Robotics

  30. Flynn, E.P.: Low-cost approaches to UAV design using advanced manufacturing techniques. In: 2013 IEEE Integrated STEM Education Conference (ISEC), pp. 1–4 (2013). https://doi.org/10.1109/ISECon.2013.6525199. https://ieeexplore.ieee.org/document/6525199

  31. Foehn, P., Kaufmann, E., Romero, A., Penicka, R., Sun, S., Bauersfeld, L., Laengle, T., Cioffi, G., Song, Y., Loquercio, A., Scaramuzza, D.: Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight. Science Robotics 7(67), eabl6259 (2022). https://doi.org/10.1126/scirobotics.abl6259. https://www.science.org/doi/pdf/10.1126/scirobotics.abl6259

  32. Giernacki, W., Skwierczynski, M., Witwicki, W., Wronski, P., Kozierski, P.: Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 37–42 (2017). https://doi.org/10.1109/MMAR.2017.8046794. https://ieeexplore.ieee.org/document/8046794

  33. Guo, H., Li, M., Sun, P., Zhao, C., Zuo, W., Li, X.: Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design. Advances in Mechanical Engineering 13(7) (2021). https://doi.org/10.1177/1687814021103499. https://journals.sagepub.com/doi/full/10.1177/16878140211034999

  34. Gupta, P.M., Pairet, E., Nascimento, T., Saska, M.: Landing a UAV in Harsh Winds and Turbulent Open Waters. IEEE Robotics and Automation Letters 8(2), 744–751 (2023). DOI: https://doi.org/10.1109/LRA.2022.3231831.https://ieeexplore.ieee.org/document/9998066

  35. Hamandi, M., Usai, F., Sablé, Q., Staub, N., Tognon, M., Franchi, A.: Design of multirotor aerial vehicles: A taxonomy based on input allocation. The International Journal of Robotics Research 40(8–9), 1015–1044 (2021). DOI: https://doi.org/10.1177/02783649211025998.https://journals.sagepub.com/doi/full/10.1177/02783649211025998

  36. Hert, D., Baca, T., Petracek, P., Kratky, V., Spurny, V., Petrlik, M., Vrba, M., Zaitlik, D., Stoudek, P., Walter, V., Stepan, P., Horyna, J., Pritzl, V., Silano, G., Bonilla Licea, D., Stibinger, P., Penicka, R., Nascimento, T., Saska, M.: MRS Modular UAV Hardware Platforms for Supporting Research in Real-World Outdoor and Indoor Environments. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1264–1273 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836083. https://ieeexplore.ieee.org/document/9836083

  37. Horyna, J., Baca, T., Walter, V., Albani, D., Hert, D., Ferrante, E., Saska, M.: Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication. Autonomous Robots pp. 1–17 (2022). https://doi.org/10.1007/s10514-022-10066-5. https://link.springer.com/article/10.1007/s10514-022-10066-5

  38. Horyna, J., Kratky, V., Ferrante, E., Saska, M.: Decentralized multi-robot velocity estimation for UAVs enhancing onboard camera-based velocity measurements. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 11570–11577 (2022). https://doi.org/10.1109/IROS47612.2022.9981894. https://ieeexplore.ieee.org/document/9981894

  39. Horyna, J., Walter, V., Saska, M.: UVDAR-COM: UV-Based Relative Localization of UAVs with Integrated Optical Communication. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1302–1308 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836151. https://ieeexplore.ieee.org/document/9836151

  40. Jang, I., Hu, J., Arvin, F., Carrasco, J., Lennox, B.: Omnipotent Virtual Giant for Remote Human–Swarm Interaction. In: 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), pp. 488–494. IEEE (2021). https://doi.org/10.1109/RO-MAN50785.2021.9515542. https://ieeexplore.ieee.org/document/9515542

  41. Jindal, K., Wang, A., Thakur, D., Zhou, A., V.Spurny, V.Walter, Broughton, G., Krajnik, T., Saska, M., Loianno, G.: Design and Deployment of an Autonomous Unmanned Ground Vehicle for Urban Firefighting Scenarios. Field Robotics 2, 186–202 (2021). https://doi.org/10.55417/fr.2021007. https://fieldrobotics.net/Field_Robotics/Volume_1_files/7_Jindal

  42. Kratky, V., Alcantara, A., Capitan, J., Stepan, P., Saska, M., Ollero, A.: Autonomous Aerial Filming With Distributed Lighting by a Team of Unmanned Aerial Vehicles. IEEE Robotics and Automation Letters 6(4), 7580–7587 (2021). DOI: https://doi.org/10.1109/LRA.2021.3098811.https://ieeexplore.ieee.org/document/9495218

  43. Kratky, V., Petracek, P., Baca, T., Saska, M.: An Autonomous Unmanned Aerial Vehicle System for Fast Exploration of Large Complex Indoor Environments. Journal of Field Robotics 38(8) (2021). https://doi.org/10.1002/rob.22021. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22021

  44. Kratky, V., Petracek, P., Nascimento, T., Cadilova, M., Skobrtal, M., Stoudek, P., Saska, M.: Safe Documentation of Historical Monuments by an Autonomous Unmanned Aerial Vehicle. ISPRS International Journal of Geo-Information 10(11) (2021). https://doi.org/10.3390/ijgi10110738. https://www.mdpi.com/2220-9964/10/11/738/htm

  45. Kratky, V., Petracek, P., Spurny, V., Saska, M.: Autonomous Reflectance Transformation Imaging by a Team of Unmanned Aerial Vehicles. IEEE Robotics and Automation Letters 5(2), 2302–2309 (2020). DOI: https://doi.org/10.1109/LRA.2020.2970646.https://ieeexplore.ieee.org/document/8977312

  46. Krizek, M., Horyna, J., Saska, M.: Swarming of Unmanned Aerial Vehicles by Sharing Distributed Observations of Workspace. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 300–309 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836073. https://ieeexplore.ieee.org/document/9836073

  47. Loianno, G., Brunner, C., McGrath, G., Kumar, V.: Estimation, Control, and Planning for Aggressive Flight With a Small Quadrotor With a Single Camera and IMU. IEEE Robotics and Automation Letters 2(2), 404–411 (2017). DOI: https://doi.org/10.1109/LRA.2016.2633290.https://ieeexplore.ieee.org/document/7762111

  48. Loianno, G., Spurny, V., Thomas, J., Baca, T., Thakur, D., Hert, D., Penicka, R., Krajnik, T., Zhou, A., Cho, A., Saska, M., Kumar, V.: Localization, Grasping, and Transportation of Magnetic Objects by a team of MAVs in Challenging Desert like Environments. IEEE Robotics and Automation Letters 3(3), 1576–1583 (2018). DOI: https://doi.org/10.1109/LRA.2018.2800121.https://ieeexplore.ieee.org/document/8276269

  49. Ma, J., Lai, E.M.K., Ren, J.: On the Timing of Operator Commands for the Navigation of a Robot Swarm. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1634–1639 (2018). https://doi.org/10.1109/ICARCV.2018.8581236. https://ieeexplore.ieee.org/document/8581236

  50. Martin, P.G., Kwong, S., Smith, N., Yamashiki, Y., Payton, O.D., Russell-Pavier, F., Fardoulis, J.S., Richards, D., Scott, T.B.: 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility. International Journal of Applied Earth Observation and Geoinformation 52, 12–19 (2016). DOI: https://doi.org/10.1016/j.jag.2016.05.007.https://www.sciencedirect.com/science/article/pii/S0303243416300733

  51. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6235–6240 (2015). https://doi.org/10.1109/ICRA.2015.7140074. https://ieeexplore.ieee.org/document/7140074

  52. Mohta, K., Watterson, M., Mulgaonkar, Y., Liu, S., Qu, C., Makineni, A., Saulnier, K., Sun, K., Zhu, A., Delmerico, J., Karydis, K., Atanasov, N., Loianno, G., Scaramuzza, D., Daniilidis, K., Taylor, C.J., Kumar, V.: Fast, autonomous flight in gps-denied and cluttered environments. Journal of Field Robotics 35(1), 101–120 (2018). doi: https://doi.org/10.1002/rob.21774.https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21774

  53. Musil, T., Petrlik, M., Saska, M.: SphereMap: Dynamic Multi-Layer Graph Structure for Rapid Safety-Aware UAV Planning. IEEE Robotics and Automation Letters 7(4), 11007–11014 (2022). DOI: https://doi.org/10.1109/LRA.2022.3195194.https://ieeexplore.ieee.org/document/9847042

  54. Nascimento, T.P., Saska, M.: Position and attitude control of multi-rotor aerial vehicles: A survey. Annual Reviews in Control 48, 129–146 (2019). DOI: https://doi.org/10.1016/j.arcontrol.2019.08.004.https://www.sciencedirect.com/science/article/pii/S1367578819300483

  55. Nekovář, F., Faigl, J., Saska, M.: Vehicle Fault-Tolerant Robust Power Transmission Line Inspection Planning. In: 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4 (2022). https://doi.org/10.1109/ETFA52439.2022.9921692. https://ieeexplore.ieee.org/document/9921692

  56. Nekovar, F., Faigl, J., Saska, M.: Multi-Tour Set Traveling Salesman Problem in Planning Power Transmission Line Inspection. IEEE Robotics and Automation Letters 6(4), 6196–6203 (2021). DOI: https://doi.org/10.1109/LRA.2021.3091695.https://ieeexplore.ieee.org/document/9463765

  57. Nekovar, F., Faigl, J., Saska, M.: Multi-vehicle Dynamic Water Surface Monitoring (2023). https://doi.org/10.48550/arXiv.2302.11991. https://arxiv.org/abs/2302.11991. Submitted To IEEE Robotics and Automation Letters

  58. Novak, F., Walter, V., Petracek, P., Baca, T., Saska, M.: Fast collective evasion in self-localized swarms of unmanned aerial vehicles. Bioinspiration & biomimetics 16(6), 066025 (2021). DOI: https://doi.org/10.1088/1748-3190/ac3060.https://iopscience.iop.org/article/10.1088/1748-3190/ac3060

  59. Orekhov, V., Chung, T.: The darpa subterranean challenge: A synopsis of the circuits stage. Field Robotics 2, 735–747 (2022). https://doi.org/10.55417/fr.2022024. https://www.journalfieldrobotics.org/Field_Robotics/Volume_2_files/Vol2_24.pdf

  60. Papaioannidis, C., Makrygiannis, D., Mademlis, I., Pitas, I.: Learning Fast and Robust Gesture Recognition. In: 2021 29th European Signal Processing Conference (EUSIPCO), pp. 761–765 (2021). https://doi.org/10.23919/EUSIPCO54536.2021.9616227. https://ieeexplore.ieee.org/document/9616227

  61. Patel, V.V., Liarokapis, M.V., Dollar, A.M.: Open Robot Hardware: Progress, Benefits, Challenges, and Best Practices. IEEE Robotics & Automation Magazine pp. 2–29 (2022). https://doi.org/10.1109/MRA.2022.3225725. https://ieeexplore.ieee.org/document/9992182

  62. Perez, D., Alcantara, A., Capitan, J.: Distributed Trajectory Planning for a Formation of Aerial Vehicles Inspecting Wind Turbines. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 646–654 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836173. https://ieeexplore.ieee.org/document/9836173

  63. Petracek, P., Kratky, V., Baca, T., Petrlik, M., Saska, M.: New Era in Cultural Heritage Preservation: Cooperative Aerial Autonomy: Supervised Autonomy for Fast Digitalization of Difficult-to-Access Interiors of Historical Monuments. IEEE Robotics & Automation Magazine pp. 2–19 (2023). https://doi.org/10.1109/MRA.2023.3244423. https://ieeexplore.ieee.org/document/10056379

  64. Petracek, P., Kratky, V., Petrlik, M., Baca, T., Kratochvil, R., Saska, M.: Large-Scale Exploration of Cave Environments by Unmanned Aerial Vehicles. IEEE Robotics and Automation Letters 6(4), 7596–7603 (2021). DOI: https://doi.org/10.1109/LRA.2021.3098304.https://ieeexplore.ieee.org/document/9492802

  65. Petracek, P., Kratky, V., Saska, M.: Dronument: System for Reliable Deployment of Micro Aerial Vehicles in Dark Areas of Large Historical Monuments. IEEE Robotics and Automation Letters 5(2), 2078–2085 (2020). DOI: https://doi.org/10.1109/LRA.2020.2969935.https://ieeexplore.ieee.org/document/8972370

  66. Petracek, P., Walter, V., Baca, T., Saska, M.: Bio-Inspired Compact Swarms of Micro Aerial Vehicles without Communication and External Localization. Bioinspiration & Biomimetics 16(2) (2020). https://doi.org/10.1088/1748-3190/abc6b3. https://iopscience.iop.org/article/10.1088/1748-3190/abc6b3

  67. Petrlik, M., Baca, T., Hert, D., Vrba, M., Krajnik, T., Saska, M.: A Robust UAV System for Operations in a Constrained Environment. IEEE Robotics and Automation Letters 5 (2020). DOI: https://doi.org/10.1109/LRA.2020.2970980.https://ieeexplore.ieee.org/document/8979150

  68. Petrlik, M., Petracek, P., Kratky, V., Musil, T., Stasinchuk, Y., Vrba, M., Baca, T., Hert, D., Pecka, M., Svoboda, T., Saska, M.: UAVs Beneath the Surface: Cooperative Autonomy for Subterranean Search and Rescue in DARPA SubT. Field Robotics 3, 1–68 (2023). https://doi.org/10.55417/fr.2023001. https://fieldrobotics.net/Field_Robotics/Volume_3_files/Vol3_01.pdf

  69. Pritzl, V., Stepan, P., Saska, M.: Autonomous Flying into Buildings in a Firefighting Scenario. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 239–245. IEEE (2021). https://doi.org/10.1109/ICRA48506.2021.9560789. https://ieeexplore.ieee.org/document/9560789

  70. Pritzl, V., Vrba, M., Stepan, P., Saska, M.: Cooperative Navigation and Guidance of a Micro-Scale Aerial Vehicle by an Accompanying UAV using 3D LiDAR Relative Localization. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 526–535 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836116. https://ieeexplore.ieee.org/document/9836116

  71. Pritzl, V., Vrba, M., Tortorici, C., Ashour, R., Saska, M.: Adaptive estimation of UAV altitude in complex indoor environments using degraded and time-delayed measurements with time-varying uncertainties. Robotics and Autonomous Systems 160, 104315 (2023). DOI: https://doi.org/10.1016/j.robot.2022.104315.https://www.sciencedirect.com/science/article/pii/S0921889022002044

  72. Ren, Z., Meng, J., Yuan, J.: Depth camera based hand gesture recognition and its applications in human-computer-interaction. In: 2011 8th International Conference on Information, Communications & Signal Processing (ICICS), pp. 1–5 (2011). https://doi.org/10.1109/ICICS.2011.6173545. https://ieeexplore.ieee.org/document/6173545

  73. Rodriguez, F., Diaz-Banez, J.M., Sanchez-Laulhe, E., Capitan, J., Ollero, A.: Kinodynamic planning for an energy-efficient autonomous ornithopter. Computers & Industrial Engineering 163, 107814 (2021). DOI: https://doi.org/10.1016/j.cie.2021.107814.https://www.sciencedirect.com/science/article/pii/S036083522100718X

  74. Roucek, T., Pecka, M., Cizek, P., Petricek, T., Bayer, J., Salansky, V., Azayev, T., Hert, D., Petrlik, M., Baca, T., Spurny, V., Kratky, V., Petracek, P., Baril, D., Vaidis, M., Kubelka, V., Pomerleau, F., Faigl, J., Zimmermann, K., Saska, M., Svoboda, T., Krajnik, T.: System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA Subterranean Challenge. Field Robotics 2, 1779–1818 (2022). https://doi.org/10.55417/fr.2022055. https://fieldrobotics.net/Field_Robotics/Volume_2_files/Vol2_55.pdf

  75. Sa, I., Kamel, M., Burri, M., Bloesch, M., Khanna, R., Popovic, M., Nieto, J., Siegwart, R.: Build your own visual-inertial drone: A cost-effective and open-source autonomous drone. IEEE Robotics & Automation Magazine 25(1), 89–103 (2018). DOI: https://doi.org/10.1109/MRA.2017.2771326.https://ieeexplore.ieee.org/document/8233182

  76. Saska, M., Kratky, V., Spurny, V., Baca, T.: Documentation of dark areas of large historical buildings by a formation of unmanned aerial vehicles using model predictive control. In: IEEE 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2017). https://doi.org/10.1109/ETFA.2017.8247654. https://ieeexplore.ieee.org/abstract/document/8247654

  77. Schacht-Rodriguez, R., Ortiz-Torres, G., Garcia-Beltran, C.D., Astorga-Zaragoza, C.M., Ponsart, J.C., Perez-Estrada, A.J.: Design and development of a uav experimental platform. IEEE Latin America Transactions 16(5), 1320–1327 (2018). DOI: https://doi.org/10.1109/TLA.2018.8408423.https://ieeexplore.ieee.org/document/8408423

  78. Silano, G., Aucone, E., Iannelli, L.: CrazyS: A Software-In-The-Loop Platform for the Crazyflie 2.0 Nano-Quadcopter. In: 2018 26th Mediterranean Conference on Control and Automation (MED), pp. 1–6 (2018). https://doi.org/10.1109/MED.2018.8442759. https://ieeexplore.ieee.org/document/8442759

  79. Silano, G., Baca, T., Penicka, R., Liuzza, D., Saska, M.: Power Line Inspection Tasks With Multi-Aerial Robot Systems Via Signal Temporal Logic Specifications. IEEE Robotics and Automation Letters 6(2), 4169–4176 (2021). DOI: https://doi.org/10.1109/LRA.2021.3068114.https://ieeexplore.ieee.org/document/9384182

  80. Silano, G., Bednar, J., Nascimento, T., Capitan, J., Saska, M., Ollero, A.: A Multi-Layer Software Architecture for Aerial Cognitive Multi-Robot Systems in Power Line Inspection Tasks. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1624–1629 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476813. https://ieeexplore.ieee.org/document/9476813

  81. Silano, G., Iannelli, L.: Robot Operating System (ROS): The Complete Reference (Volume 4), chap. CrazyS: a software-in-the-loop simulation platform for the Crazyflie 2.0 nano-quadcopter, pp. 81–115. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-20190-6_4. https://link.springer.com/chapter/10.1007/978-3-030-20190-6_4

  82. Smrcka, D., Baca, T., Nascimento, T., Saska, M.: Admittance Force-Based UAV-Wall Stabilization and Press Exertion for Documentation and Inspection of Historical Buildings. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 552–559 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476873. https://ieeexplore.ieee.org/document/9476873

  83. Spurny, V., Baca, T., Saska, M., Penicka, R., Krajnik, T., et al.: Cooperative Autonomous Search, Grasping and Delivering in a Treasure Hunt Scenario by a Team of UAVs. Journal of Field Robotics 36(1), 125–148 (2019). DOI: https://doi.org/10.1002/rob.21816.https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21816

  84. Spurny, V., Pritzl, V., Walter, V., Petrlik, M., Baca, T., Stepan, P., Zaitlik, D., Saska, M.: Autonomous Firefighting Inside Buildings by an Unmanned Aerial Vehicle. IEEE Access 9, 15872–15890 (2021). DOI: https://doi.org/10.1109/ACCESS.2021.3052967.https://ieeexplore.ieee.org/document/9328798

  85. Stasinchuk, Y., Vrba, M., Baca, T., Spurny, V., Petrlik, M., Hert, D., D.Zaitlik, M.Saska: A Multi-MAV System For Autonomous Multiple Targets Elimination in the MBZIRC 2020 competition. Field Robotics 2, 1697–1720 (2021). https://doi.org/10.55417/fr.2022052. http://fieldrobotics.net/Field_Robotics/Volume_2_files/Vol2_52

  86. Stasinchuk, Y., Vrba, M., Petrlik, M., Baca, T., Spurny, V., Hert, D., Zaitlik, D., Nascimento, T., Saska, M.: A Multi-UAV System for Detection and Elimination of Multiple Targets. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 555–561 (2021). https://doi.org/10.1109/ICRA48506.2021.9562057. https://ieeexplore.ieee.org/document/9562057

  87. Stepan, P., Krajnik, T., Petrlik, M., Saska, M.: Vision techniques for on-board detection, following and mapping of moving targets. Journal of Field Robotics 36(1), 252–269 (2019). DOI: https://doi.org/10.1002/rob.21850.https://onlinelibrary.wiley.com/doi/10.1002/rob.21850

  88. Stibinger, P., Baca, T., Saska, M.: Localization of Ionizing Radiation Sources by Cooperating Micro Aerial Vehicles With Pixel Detectors in Real-Time. IEEE Robotics and Automation Letters 5, 3634–3641 (2020). DOI: https://doi.org/10.1109/LRA.2020.2978456.https://ieeexplore.ieee.org/document/9024023

  89. Stibinger, P., Broughton, G., Majer, F., Rozsypalek, Z., Wang, A., Jindal, K., Zhou, A., Thakur, D., Loianno, G., Krajnik, T., Saska, M.: Towards new frontiers in mobile manipulation: Team CTU-UPenn-NYU at MBZIRC 2020. Field Robotics 2, 75–106 (2022). https://doi.org/10.55417/fr.2022004. https://fieldrobotics.net/Field_Robotics/Volume_2_files/Vol2_04.pdf

  90. Stingu, E., Lewis, F.: A Hardware Platform for Research in Helicopter UAV Control. Unmanned Aircraft Systems 54, 387–406 (2009). DOI: https://doi.org/10.1007/978-1-4020-9137-7_21.https://link.springer.com/chapter/10.1007/978-1-4020-9137-7_21

  91. Towler, J., Krawiec, B., Kochersberger, K.: Radiation mapping in post-disaster environments using an autonomous helicopter. Remote Sensing 4(7), 1995–2015 (2012). DOI: https://doi.org/10.3390/rs4071995.https://www.mdpi.com/2072-4292/4/7/1995

  92. Turecek, D., Jakubek, J., Trojanova, E., Sefc, L.: Single layer compton camera based on timepix3 technology. Journal of Instrumentation 15(01) (2020). https://doi.org/10.1088/1748-0221/15/01/C01014. https://iopscience.iop.org/article/10.1088/1748-0221/15/01/C01014

  93. Vrba, M., Hert, D., Saska, M.: Onboard Marker-Less Detection and Localization of Non-Cooperating Drones for Their Safe Interception by an Autonomous Aerial System. IEEE Robotics and Automation Letters 4(4), 3402–3409 (2019). DOI: https://doi.org/10.1109/LRA.2019.2927130.https://ieeexplore.ieee.org/document/8756100

  94. Vrba, M., Saska, M.: Marker-Less Micro Aerial Vehicle Detection and Localization Using Convolutional Neural Networks. IEEE Robotics and Automation Letters 5(2), 2459–2466 (2020). DOI: https://doi.org/10.1109/LRA.2020.2972819.https://ieeexplore.ieee.org/document/8988144

  95. Vrba, M., Stasinchuk, Y., Báča, T., Spurný, V., Petrlík, M., Heřt, D., Žaitlík, D., Saska, M.: Autonomous capture of agile flying objects using UAVs: The MBZIRC 2020 challenge. Robotics and Autonomous Systems 149, 103970 (2022). https://doi.org/10.1016/j.robot.2021.103970.https://www.sciencedirect.com/science/article/pii/S0921889021002396

  96. Vrba, M., Walter, V., Saska, M.: On Onboard LiDAR-based Flying Object Detection (2023). https://doi.org/10.48550/arXiv.2303.05404. https://arxiv.org/abs/2303.05404. Submitted To IEEE Transactions on Robotics

  97. Štibinger, P., Broughton, G., Majer, F., Rozsypálek, Z., Wang, A., Jindal, K., Zhou, A., Thakur, D., Loianno, G., Krajník, T., Saska, M.: Mobile Manipulator for Autonomous Localization, Grasping and Precise Placement of Construction Material in a Semi-structured Environment. IEEE Robotics and Automation Letters 6(2), 2595–2602 (2021). DOI: https://doi.org/10.1109/LRA.2021.3061377.https://ieeexplore.ieee.org/document/9361167

  98. Walter, V., Saska, M., Franchi, A.: Fast mutual relative localization of UAVs using ultraviolet LED markers. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1217–1226 (2018). https://doi.org/10.1109/ICUAS.2018.8453331. https://ieeexplore.ieee.org/document/8453331

  99. Walter, V., Spurny, V., Petrlik, M., Baca, T., Zaitlik, D., Demkiv, L., Saska, M.: Extinguishing Real Fires by Fully Autonomous Multirotor UAVs in the MBZIRC 2020 Competition. Field Robotics 2, 406–436 (2021). https://doi.org/10.55417/fr.2022015. https://fieldrobotics.net/Field_Robotics/Volume_2_files/Vol2_15

  100. Walter, V., Spurny, V., Petrlik, M., Baca, T., Zaitlik, D., Saska, M.: Extinguishing of Ground Fires by Fully Autonomous UAVs Motivated by the MBZIRC 2020 Competition. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 787–793 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476723. https://ieeexplore.ieee.org/document/9476723

  101. Walter, V., Staub, N., Saska, M., Franchi, A.: Mutual Localization of UAVs based on Blinking Ultraviolet Markers and 3D Time-Position Hough Transform. In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pp. 298–303 (2018). https://doi.org/10.1109/COASE.2018.8560384. https://ieeexplore.ieee.org/document/8560384

  102. Walter, V., Vrba, M., Saska, M.: On training datasets for machine learning-based visual relative localization of micro-scale UAVs. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10674–10680 (2020). https://doi.org/10.1109/ICRA40945.2020.9196947. https://ieeexplore.ieee.org/document/9196947

  103. Walter, W., Staub, N., Franchi, A., Saska, M.: UVDAR System for Visual Relative Localization With Application to Leader-Follower Formations of Multirotor UAVs. IEEE Robotics and Automation Letters 4(3), 2637–2644 (2019). DOI: https://doi.org/10.1109/LRA.2019.2901683.https://ieeexplore.ieee.org/document/8651535

  104. Wang, S., Njau, C.E., Jiang, Z.: Design and Implementation of Multi-UAV Cooperation Search Experimental platform. In: 2021 5th International Conference on Robotics and Automation Sciences (ICRAS), pp. 94–98 (2021). https://doi.org/10.1109/ICRAS52289.2021.9476222. https://ieeexplore.ieee.org/document/9476222

  105. Wu, M., Zhu, X., Ma, L., Wang, J., Bao, W., Li, W., Fan, Z.: Torch: Strategy evolution in swarm robots using heterogeneous-homogeneous coevolution method. Journal of Industrial Information Integration 25, 100239 (2022). https://doi.org/10.1016/j.jii.2021.100239.https://www.sciencedirect.com/science/article/pii/S2452414X2100039X

Download references

Acknowledgements

The authors would like to thank the researchers from the Laboratory of Systems Engineering and Robotics Group at the Universidade Federal da Paraíba that, in partnership, helped improve and test our system. Furthermore, the paper is an extension of the manuscript with DOI: 10.1109/ICUAS54217.2022.9836083, from ICUAS 2022.

Funding

This work was partially funded by the CTU grant no. SGS20/174/OHK3/3T/13, by the Czech Science Foundation (GAČR) under research project no. 20-10280S, no. 20-29531S, no. 22-24425S and no. 23-06162M, by TAČR project no. FW01010317, by the OP VVV funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics", by the NAKI II project no. DG18P02OVV069, by the European Union’s Horizon 2020 research and innovation program AERIAL-CORE under grant agreement no. 871479, by the DARPA, and by the Technology Innovation Institute - Sole Proprietorship LLC, UAE. Furthermore, computational resources were supplied by the project “e-Infrastruktura CZ" (e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures.

Author information

Authors and Affiliations

Authors

Contributions

In this work, M. Saska coordinated the entire project and group activities. T. Nascimento (the corresponding author) was responsible for coordinating the writing of this manuscript, and the writing of Sections 1, 5.3.2, and 5.3.2. D. Hert coordinated the hardware team and selected the electronic components, actuators, and sensors of the UAVs, and wrote Section 3. D. Zaitlik designed the electronic MRS board. P. Stoudek was responsible for designing the various types of mechanical frames and writing Sections 2.1, 2.2, 2.3, and 2.8, while M. Sramek was responsible for printing all the 3D-printed parts and coordinating the mass production of MRS UAVs and writing Sections 2.4, 2.5, and 2.7. On the MRS system, T. Baca coordinated the MRS software development and wrote Sections 4 and 5.3.4. V. Walter designed the UVDAR MRS system. D. Bonilla Licea helped improve communication through UVDAR and wrote Section 2.6. P. Stepan helped develop the vision system of MRS UAVs. V. Spurny was responsible for developing the simulation environment and wrote Section 5.1. On upgrading the MRS Drone and MRS SW system to attend to various applications, M. Petrlik designed the MRS Drone localization system and wrote Section 5.2.1, while V. Pritzl helped improve the sensor fusion of the MRS Drone and helped write Sections 5.2.1 and 5.4.2. P. Petracek designed the MRS Drone (HW and SW) for the Dronument project and wrote Sections 5.2.2 and 5.4.2, while V. Kratky designed the MRS Drone designed the MRS Drone (HW and SW) for industrial inspections and wrote Section 5.2.3. J. Horyna focused on swarming in deserts and modified the MRS Drone for such applications, as well as wrote Section 5.3.1. M. Vrba focused on the vision system, localization, and AI-based applications of the MRS Drone, while also writing Sections 5.4, 5.4.1, and 5.4.6. P. Stibinger helped improve the MRS Drone SW system and wrote Section 5.4.3. A. Ahmad applied the MRS Drone to outer space applications and manipulation and wrote Sections 5.4.4 and 5.4.5. R. Penicka designed the trajectory and path planning of the MRS Drone, revised the entire manuscript, helped write Section 1, and wrote the abstract and Section 6. Finally, G. Silano wrote Section 5.3.5 and helped revise the entire manuscript.

Corresponding author

Correspondence to Tiago Nascimento.

Ethics declarations

Ethics approval and consent to participate

All applicable institutional and national guidelines were followed.

Consent for Publication

Informed consent was obtained from all the co-authors of this publication.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hert, D., Baca, T., Petracek, P. et al. MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems. J Intell Robot Syst 108, 64 (2023). https://doi.org/10.1007/s10846-023-01879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01879-2

Keywords

Navigation