Skip to main content
Log in

The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles

Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We present a multirotor Unmanned Aerial Vehicle (UAV) control and estimation system for supporting replicable research through realistic simulations and real-world experiments. We propose a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-denied environments, including outdoor-indoor transitions and the execution of redundant estimators for backing up unreliable localization sources. Two feedback control designs are presented: one for precise and aggressive maneuvers, and the other for stable and smooth flight with a noisy state estimate. The proposed control and estimation pipeline are constructed without using the Euler/Tait-Bryan angle representation of orientation in 3D. Instead, we rely on rotation matrices and a novel heading-based convention to represent the one free rotational degree-of-freedom in 3D of a standard multirotor helicopter. We provide an actively maintained and well-documented open-source implementation, including realistic simulation of UAV, sensors, and localization systems. The proposed system is the product of years of applied research on multi-robot systems, aerial swarms, aerial manipulation, motion planning, and remote sensing. All our results have been supported by real-world system deployment that subsequently shaped the system into the form presented here. In addition, the system was utilized during the participation of our team from the Czech Technical University in Prague in the prestigious MBZIRC 2017 and 2020 robotics competitions, and also in the DARPA Subterranean challenge. Each time, our team was able to secure top places among the best competitors from all over the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

The presented software is provided as open-source at https://github.com/ctu-mrs/mrs_uav_system. Additional multimedia materials are available at http://mrs.felk.cvut.cz/mrs-uav-system.

References

  1. Abeywardena, D., Pounds, P., Hunt, D., Dissanayake, G.: Design and development of recopter: An open source ros-based multi-rotor platform for research. In: ACRA (2015)

  2. Aboudonia, A., Rashad, R., El-Badawy, A.: Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances. J. Intell. Robot. Syst. 90(1-2), 201–216 (2018)

    Article  Google Scholar 

  3. Baca, T., Hert, D., Loianno, G., Saska, M., Kumar, V.: Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–8. IEEE (2018)

  4. Baca, T., Jilek, M., et al.: Timepix radiation detector for autonomous radiation localization and mapping by micro unmanned vehicles. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–8. IEEE (2019)

  5. Baca, T., Loianno, G., Saska, M.: Embedded Model Predictive Control of Unmanned Micro Aerial Vehicles. In: IEEE MMAR, pp. 992–997. IEEE (2016)

  6. Baca, T., Penicka Robert Stepan, P., Petrlik, M., Spurny, V., Hert, D., Saska, M.: Autonomous Cooperative Wall Building by a Team of Unmanned Aerial Vehicles in the MBZIRC 2020 Competition submitted to Robotics and Autonomous System (2020)

  7. Baca, T., Stepan, P., Spurny, B., Hert, D., Penicka, R., Saska, M., Thomas, J., Loianno, G., Kumar, V.: Autonomous landing on a moving vehicle with an unmanned aerial vehicle. J. Field Robot. 36, 874–891 (2019)

    Article  Google Scholar 

  8. Baca, T., Turecek, D., McEntaffer, R., Filgas, R.: Rospix: modular software tool for automated data acquisitions of Timepix detectors on Robot Operating System. J. Instrum. 13(11), C11008 (2018)

    Article  Google Scholar 

  9. Benallegue, A., Mokhtari, A., Fridman, L.: High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 18(4-5), 427–440 (2008)

    Article  MathSciNet  Google Scholar 

  10. Burri, M., Datwiler, M., Achtelik, M. W., Siegwart, R.: Robust state estimation for micro aerial vehicles based on system dynamics. In: 2015 IEEE international conference on robotics and automation, pp. 5278–5283. IEEE (2015)

  11. Cayero, J., Rotondo, D., Morcego, B., Puig, V.: Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation. Int. J. Appl. Math. Comput. Sci. 29(1), 99–109 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ceballos, A., De Silva, L., Herrb, M., Ingrand, F., Mallet, A., Medina, A., Prieto, M.: GenoM as a robotics framework for planetary rover surface operations. In: ASTRA, pp. 12–14 (2011)

  13. Rodriguez de Cos, C., Acosta, J. A.: Explicit Aerodynamic Model Characterization of a Multirotor Unmanned Aerial Vehicle in Quasi-Steady Flight Journal of Computational and Nonlinear Dynamics 15(8) (2020)

  14. Delmerico, J., et al.: The current state and future outlook of rescue robotics. J. Field Robot. 36(7), 1171–1191 (2019)

    Article  Google Scholar 

  15. Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58(15-16), 1–35 (2006)

    Google Scholar 

  16. Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., Schultz, U. P.: A survey of open-source uav flight controllers and flight simulators. Microprocess. Microsyst. 61, 11–20 (2018)

    Article  Google Scholar 

  17. Elkady, A., et al.: Robotics middleware: A comprehensive literature survey and attribute-based bibliography. J. Robot., 2012 (2012)

  18. Faigl, J., Vana, P., Penicka, R., Saska, M.: Unsupervised learning based flexible framework for surveillance planning with aerial vehicles. J. Field Robot. 36(1), 270–301 (2019)

    Article  Google Scholar 

  19. Faigl, J., Vana, P., Saska, M., Baca, T., Spurny, V.: On solution of the Dubins touring problem. In: IEEE ECMR, pp. 1–6 (2017)

  20. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: RotorS — A modular gazebo MAV simulator framework. In: Robot Operating System (ROS), pp. 595–625. Springer (2016)

  21. Gao, F., Wu, W., Lin, Y., Shen, S.: Online safe trajectory generation for quadrotors using fast marching method and bernstein basis polynomial. In: 2018 IEEE International Conference on Robotics and Automation, pp. 344–351. IEEE (2018)

  22. Giernacki, W., Horla, D., Baca, T., Saska, M.: Real-time model-free minimum-seeking autotuning method for unmanned aerial vehicle controllers based on fibonacci-search algorithm. Sensors 19(2), 312 (2019)

    Article  Google Scholar 

  23. Hentout, A., Maoudj, A., Bouzouia, B.: A survey of development frameworks for robotics. In: IEEE ICMIC, pp. 67–72. IEEE (2016)

  24. Hentzen, D., Stastny, T., Siegwart, R., Brockers, R.: Disturbance estimation and rejection for high-precision multirotor position control. In: IEEE/RSJ IROS, pp. 2797–2804. IEEE (2019)

  25. Inigo-Blasco, P., et al.: Robotics software frameworks for multi-agent robotic systems development. Robot. Auton. Syst. 60(6), 803–821 (2012)

    Article  Google Scholar 

  26. Jasim, O. A., Veres, S. M.: A robust controller for multi rotor UAVs. Aerosp. Sci. Technol. 105, 106010 (2020)

    Article  Google Scholar 

  27. Kamel, M., Alonso-Mora, J., Siegwart, R., Nieto, J.: Robust collision avoidance for multiple micro aerial vehicles using nonlinear model predictive control. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 236–243. IEEE (2017)

  28. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: IEEE SSRR. IEEE (2011)

  29. Kratky, V., Petracek, P., Spurny, V., Saska, M.: Autonomous reflectance transformation imaging by a team of unmanned aerial vehicles. IEEE Robot. Autom. Lett. 5(2), 2302–2309 (2020)

    Article  Google Scholar 

  30. Labbadi, M., Cherkaoui, M.: Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 93, 105306 (2019)

    Article  Google Scholar 

  31. L’Afflitto, A., Anderson, R. B., Mohammadi, K.: An introduction to nonlinear robust control for unmanned quadrotor aircraft: how to design control algorithms for quadrotors using sliding mode control and adaptive control techniques [focus on education]. IEEE Control. Syst. Mag. 38(3), 102–121 (2018)

    Article  Google Scholar 

  32. Lee, T., et al.: Geometric tracking control of a quadrotor UAV on SE(3). In: 2010 IEEE Conference on Decision and Control, pp. 5420–5425. IEEE (2010)

  33. Lee, T., et al.: Nonlinear robust tracking control of a quadrotor UAV on SE(3). Asian J. Control 15(2), 391–408 (2013)

    Article  MathSciNet  Google Scholar 

  34. Loianno, G., Spurny, V., Thomas, J., Baca, T., Thakur, D., et al.: Localization, grasping, and transportation of magnetic objects by a team of MAVs in challenging desert like environments. IEEE Robot. Autom. Lett. 3(3), 1576–1583 (2018)

    Article  Google Scholar 

  35. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In: 2015 IEEE International Conference on Robotics and Automation, pp. 6235–6240. IEEE (2015)

  36. Mellado-Bataller, I., Pestana, J., Olivares-Mendez, M. A., Campoy, P., Mejias, L.: MAVwork: a framework for unified interfacing between micro aerial vehicles and visual controllers. In: Frontiers of Intelligent Autonomous Systems, pp. 165–179. Springer (2013)

  37. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011)

  38. Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another robot platform. Int. J. Adv. Robot. Syst. 3(1), 8 (2006)

    Article  Google Scholar 

  39. Mohta, K., Watterson, M., Mulgaonkar, Y., Liu, S., Qu, C., Makineni, A., Saulnier, K., Sun, K., Zhu, A., Delmerico, J., et al.: Fast, autonomous flight in GPS-denied and cluttered environments. J. Field Robot. 35(1), 101–120 (2018)

    Article  Google Scholar 

  40. Mueller, M. W., Hehn, M., D’Andrea, R.: A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Trans. Robot. 31(6), 1294–1310 (2015)

    Article  Google Scholar 

  41. Nascimento, I. B., Ferramosca, A., Piment, L. C., Raffo, G. V.: NMPC strategy for a Quadrotor UAV in a 3D unknown environment. In: ICAR, pp. 179–184. IEEE (2019)

  42. Nascimento, T. P., Saska, M.: Position and attitude control of multi-rotor aerial vehicles: A survey. Annu. Rev. Control. 48, 129–146 (2019)

    Article  MathSciNet  Google Scholar 

  43. Penicka, R., Faigl, J., Saska, M., Vana, P.: Data collection planning with non-zero sensing distance for a budget and curvature constrained unmanned aerial vehicle Autonomous Robots (2019)

  44. Penicka, R., Faigl, J., Vana, P., Saska, M.: Dubins orienteering problem. IEEE Robot. Autom. Lett. 2(2), 1210–1217 (2017)

    Article  Google Scholar 

  45. Penicka, R., Faigl, J., Vana, P., Saska, M.: Dubins orienteering problem with neighborhoods. In: 2017 IEEE International Conference on Unmanned Aircraft Systems, pp. 1555–1562 (2017)

  46. Penicka, R., Saska, M., Reymann, C., Lacroix, S.: Reactive dubins traveling salesman problem for replanning of information gathering by UAVs. In: IEEE ECMR. IEEE (2017)

  47. Pereira, J. C., Leite, V. J., Raffo, G. V.: Nonlinear Model Predictive Control on SE(3) for Quadrotor Trajectory Tracking and Obstacle Avoidance. In: ICAR, pp. 155–160. IEEE (2019)

  48. Petracek, P., Kratky, V., Saska, M.: Dronument: System for reliable deployment of micro aerial vehicles in dark areas of large historical monuments. IEEE Robot. Autom. Lett. 5(2), 2078–2085 (2020)

    Article  Google Scholar 

  49. Petrlik, M., Baca, T., Hert, D., Vrba, M., Krajnik, T., Saska, M.: A robust UAV system for operations in a constrained environment. IEEE Robot. Autom. Lett. 5 (2020)

  50. Petrlik, M., Vonasek, V., Saska, M.: Coverage optimization in the cooperative surveillance task using multiple micro aerial vehicles. In: IEEE SMC (2019)

  51. Poultney, A., Kennedy, C., Clayton, G., Ashrafiuon, H.: Robust tracking control of quadrotors based on differential flatness: Simulations and experiments. IEEE/ASME Trans. Mechatron. 23(3), 1126–1137 (2018)

    Article  Google Scholar 

  52. Qin, T., Li, P., Shen, S.: Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  53. Quigley, M., et al.: Ros: an open-source robot operating system. In: IEEE ICRA workshop on open source software, Kobe, Japan, vol. 3, pp. 5 (2009)

  54. Ramirez-Mendoza, A., Covarrubias-Fabela, J., Amezquita-Brooks, L., Garcia Salazar, O., Ramirez-Mendoza, W.: Fuzzy adaptive neurons applied to the identification of parameters and trajectory tracking control of a multi-rotor unmanned aerial vehicle based on experimental aerodynamic data, J. Intell. Robot. Syst., 380–393 (2020)

  55. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp. 649–666. Springer (2016)

  56. Roucek, T., et al.: DARPA Subterranean Challenge: Multi-robotic exploration of underground environments. In: IEEE MESAS, vol. 11995, pp. 274–290 (2019)

  57. Roussel, M. R.: Nonlinear Dynamics: A Hands-On Introductory Survey. Morgan & Claypool Publishers, San Rafael (2019)

    Book  Google Scholar 

  58. Saikin, D. A., Baca, T., Gurtner, M., Saska, M.: Wildfire fighting by unmanned aerial system exploiting its time-varying mass. IEEE Robot. Autom. Lett. 5(2), 2674–2681 (2020)

    Article  Google Scholar 

  59. Sanchez-Lopez, J. L., Suarez Fernandez, R. A., Bavle, H., Sampedro, C., Molina, M., Pestana, J., Campoy, P.: AEROSTACK: An architecture and open-source software framework for aerial robotics. In: 2016 IEEE International Conference on Unmanned Aircraft Systems, pp. 332–341 (2016)

  60. Sanchez-Lopez, J. L., et al.: A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-UAV systems: Simulation and experimentation. J. Intell. Robot. Syst. 84(1-4), 779–797 (2016)

    Article  Google Scholar 

  61. Sanchez-Lopez, J. L., et al.: Trajectory tracking for aerial robots: an optimization-based planning and control approach. J. Intell. Robot. Syst., 1–44 (2020)

  62. Saska, M.: Large sensors with adaptive shape realised by self-stabilised compact groups of micro aerial vehicles. In: Robotics Research, pp. 101–107. Springer International Publishing (2020)

  63. Saska, M., Hert, D., Baca, T., Kratky, V., Nascimento, T.: Formation control of unmanned micro aerial vehicles for straitened environments. Auton. Robot., 1573–7527 (2020)

  64. Saska, M., Kratky, V., Spurny, V., Baca, T.: Documentation of dark areas of large historical buildings by a formation of unmanned aerial vehicles using model predictive control. In: IEEE ETFA. IEEE (2017)

  65. Saska, M., et al.: Formations of unmanned micro aerial vehicles led by migrating virtual leader. In: IEEE ICARCV. IEEE (2016)

  66. Schmittle, M., et al.: OpenUAV: a UAV testbed for the CPS and robotics community. In: ACM/IEEE ICCPS, pp. 130–139. IEEE (2018)

  67. Spurny, V., Baca, T., Saska, M.: Complex manoeuvres of heterogeneous MAV-UGV formations using a model predictive control. In: IEEE MMAR, pp. 998–1003 (2016)

  68. Spurny, V., Baca, T., Saska, M., Penicka, R., Krajnik, T., et al.: Cooperative autonomous search, grasping and delivering in a treasure hunt scenario by a Team of UAVs. J. Field Robot. 36(1), 125–148 (2019)

    Article  Google Scholar 

  69. Spurny, V., Petrlik, M., Vonasek, V., Saska, M.: Cooperative transport of large objects by a pair of unmanned aerial systems using sampling-based motion planning. In: IEEE ETFA, pp. 955–962 (2019)

  70. Stepan, P., Krajnik, T., Petrlik, M., Saska, M.: Vision techniques for on-board detection, following and mapping of moving targets. J. Field Robot. 36(1), 252–269 (2019)

    Article  Google Scholar 

  71. Stibinger, P., Baca, T., Saska, M.: Localization of Ionizing Radiation Sources by Cooperating Micro Aerial Vehicles With Pixel Detectors in Real-Time. IEEE Robot. Autom. Lett. 5, 3634–3641 (2020)

    Article  Google Scholar 

  72. Suarez Fernandez, R., Rodriguez Ramos, A., Alvarez, A., et al.: The Skyeye Team Participation in the 2020 Mohamed Bin Zayed International Robotics Challenge. Online (accessed on 2020/09/05): https://www.researchgate.net/publication/339725858_The_Skyeye_Team_Participation_in_the_2020_Mohamed_Bin_Zayed_International_Robotics_Challenge (2020)

  73. Tsardoulias, E., Mitkas, P.: Robotic frameworks, architectures and middleware comparison. arXiv:1711.06842 (2017)

  74. Vrba, M., Hert, D., Saska, M.: Onboard marker-less detection and localization of non-cooperating drones for their safe interception by an autonomous aerial system. IEEE Robot. Autom. Lett. 4(4), 3402–3409 (2019)

    Article  Google Scholar 

  75. Vrba, M., Pogran, J., Pritzl, V., Spurny, V., Saska, M.: Real-time localization of transmission sources using a formation of micro aerial vehicles. In: IEEE RCAR, pp. 203–208 (2019)

  76. Vrba, M., Saska, M.: Marker-less micro aerial vehicle detection and localization using convolutional neural networks. IEEE Robot. Autom. Lett. 5(2), 2459–2466 (2020)

    Article  Google Scholar 

  77. Walter, V., Novak, T., Saska, M.: Self-localization of unmanned aerial vehicles using onboard sensors, with focus on optical flow from camera image. In: MESAS (2017)

  78. Walter, V., Saska, M., Franchi, A.: Fast mutual relative localization of UAVs using ultraviolet LED markers. In: 2018 IEEE International Conference on Unmanned Aircraft Systems (2018)

  79. Walter, V., Staub, N., Saska, M., Franchi, A.: Mutual localization of UAVs based on blinking ultraviolet markers and 3D time-position hough transform. In: IEEE CASE (2018)

  80. Walter, W., Staub, N., Franchi, A., Saska, M.: UVDAR system for visual relative localization with application to leader-follower formations of multirotor UAVs. IEEE Robot. Autom. Lett. 4(3), 2637–2644 (2019)

    Article  Google Scholar 

  81. Xiao, K., Tan, S., Wang, G., An, X., Wang, X., Wang, X.: XTDrone: A Customizable Multi-Rotor UAVs Simulation Platform. arXiv:2003.09700 (2020)

  82. Zhang, J., Gu, D., Deng, C., Wen, B.: Robust and adaptive backstepping control for hexacopter uavs. IEEE Access 7, 163502–163514 (2019)

    Article  Google Scholar 

  83. Zhang, J., Singh, S.: LOAM: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2 (2014)

Download references

Funding

This work was supported by CTU grant no SGS20/ 174/OHK3/3T/13, by the Czech Science Foundation under research project No. 20-10280S, by Ministry of Education of the Czech Republic project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”, and by the European Union’s Horizon 2020 research and innovation program under grant agreement No 871479.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, development, and testing of the proposed system. Tomas Baca conceptualized the proposed system and is the author of the proposed controller design and control architecture. He also leads the software development of the system. Matej Petrlik is the author of the multi-frame state estimator. Matous Vrba is responsible for maintaining low-level software libraries related to our efficient implementation of LKF, UKF, and ROS wrappers. Vojtech Spurny and Robert Penicka are responsible for maintaining the simulation pipeline and related subsystems of the software ecosystem. Daniel Hert is responsible for designing and maintaining the UAV hardware used for real-world experiments. Martin Saska is the head of the MRS group, CTU in Prague, and he provided us with the necessary guidance, funding and final proofreading. The first draft of the manuscript was written by Tomas Baca, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tomas Baca.

Ethics declarations

Ethics approval and consent to participate

All applicable institutional and national guidelines were followed.

Consent for Publication

Informed consent was obtained from all the co-authors of this publication.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baca, T., Petrlik, M., Vrba, M. et al. The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles. J Intell Robot Syst 102, 26 (2021). https://doi.org/10.1007/s10846-021-01383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01383-5

Keywords

Navigation