Skip to main content
Log in

Modular Robotic Systems: Characteristics and Applications

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Employing Modular Robotic Systems (MRS) in different application domains confronts a large number of challenging problems in design, optimization, and planning, and so identifying characteristics of such problems is an important step toward finding proper solution approaches for them. In this paper, we address this issue and provide a comprehensive study on MRS through a structured survey about MRS characteristics and their applications. A novel framework called MITE is proposed to characterize both the properties and applications of MRS from four perspectives of Module, Information, Task, and Environment, based on more than 120 domain-specific features, supplemented by a mapping scheme for describing the interrelations of the four basic aspects of the Task component, namely, Application (for describing high-level tasks such as navigation and rescue), Behavior (for referring to constitutive behaviors like locomotion and manipulation which bring about Applications), Goal (for characterizing the way Behaviors are accomplished), and Operation (for designating activities specific to modular robots, such as self-reconfiguration and gait control). Also, by providing a methodical review on modular robotics, the paper deals with some analyses on recent trends, research gaps and challenges, as well as open problems in the field of MRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amend, J.R., Lipson, H.: Shape-shifting materials for programmable structures, Workshop on Architectural Robotics, International Conference on Ubiquitous Computing.

  • An, B.K.: Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces. IEEE International Conference on Robotics and Automation (ICRA), 3149–3155 (2008).

  • An, B. K., Rus, D.: Designing and programming self-folding sheets. Robotics and Autonomous Systems. 62 (7), 967–1001 (2013).

    Google Scholar 

  • Asadpour, M., Ashtiani, M., Sproewitz, A., Ijspeert, A.: Graph signature for self-reconfiguration planning of modules with symmetry. IEEE International Conference on Intelligent Robots and Systems (IROS), 5295–5300 (2009).

  • Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Graph signature for self-reconfiguration planning. International Conference on Intelligent Robots and Systems (IROS), 863–869 (2008).

  • Baca, J., Ferre, M., Aracil, R.: A heterogeneous modular robotic design for fast response to a diversity of tasks. Robot. Auton. Syst. 60 (4), 522–531 (2011).

    Article  Google Scholar 

  • Bertolote, T., Hentsch, V.: Design and prototyping of an underwater modular robot, Unpublished M.Sc. thesis, EPFL, 2004.

  • Biglarbegian, M., Melek, W.W., Mendel, J. M.: Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Transactions on Industrial Electronics. 58 (4), 1371–1384 (2011).

    Article  Google Scholar 

  • Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: A demonstration of the grammatical approach to self-organization. IEEE International Conference on Intelligent Robots and Systems (IROS), 36840–3691 (2005).

  • Bojinov, H., Casal, A., Hogg, T.: Emergent structures in modular self-reconfigurable robots. IEEE International Conference on Robotics and Automation (ICRA), 1734–1741 (2000).

  • Bonardi, S., Vespignani, M., Moeckel, R., Ijspeert, A.J.: Collaborative manipulation and transport of passive pieces using the self-reconfigurable modular robots roombots. IEEE International Conference on Intelligent Robots and Systems (IROS), 2406–2412 (2013).

  • Brandt, D.: Comparison of A * and RRT-Connect Motion Planning Techniques for Self-Reconfiguration Planning. International Conference on Intelligent Robots and Systems (IROS), 892–897 (2006).

  • Brandt, D., Ostergaard, E.H.: Behaviour Subdivision and Generalization of Rules in Rule Based Control of the ATRON Self-Reconfigurable Robot. the International Symposium on Robotics and Automation (ISRA), 67–74 (2004).

  • Brunete, A., Hernando, M., Gambao, E.: Modular Multiconfigurable Architecture for Low Diameter Pipe Inspection Microrobots. IEEE International Conference on Robotics and Automation (ICRA), 490–495 (2005).

  • Brunete, A., Hernando, M., Gambao, E.: A Simulation Environment for Bio-inspired Heterogeneous Chained Modular Robots. Int. J. Adv. Robot. Syst. 11, 1729–8806 (2014).

    Google Scholar 

  • Brunete, A., Hernando, M., Gambao, E., Torres, J.E., Castro-González, A.: MDL: A Module Description Language for Chained Heterogeneous Modular Robots. International Conference on Robotics and Biomimetics, 2706–2711 (2011).

  • Bryngelson, R., Tosunoglu, S.: On the design of a seven-axis modular robot. International Conference on Industrial Electronics Society (IECON), 1501–1506 (1994).

  • Butler, Z., Fabricant, E.: Reconfigurable Teams: Cooperative Goal Seeking with Self-Reconfigurable Robots. Distributed Autonomous Robotic Systems. 8, 417–428 (2009).

    Google Scholar 

  • Butler, Z., Kotay, K., Rus, D., Tomita, K.: Cellular automata for decentralized control of self-reconfigurable robots. Workshop on Modular Robots International Conference on Robotics and Automation (ICRA) (2001).

  • Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for a class of self-reconfigurable robots, Vol. 809–816 (2002).

  • Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23 (9), 919–937 (2004).

    Article  Google Scholar 

  • Butler, Z., Rizzi, A. A.: Distributed and Cellular Robots. Springer handbook of robotics, Springer-Verlag, New York (2008).

    Book  Google Scholar 

  • Campbell, J., Pillai, P.: Collective actuation. International Journal of Robotic Research. 27 (3-4), 299–314 (2008).

    Article  Google Scholar 

  • Carmichael, B.L., Gifford, C.M.: Modeling and Simulation of the Seismic TETwalker Concept, Tech. Rep. CReSIS-TR-134, 2007.

  • Casal, A., Yim, M.: Self-Reconfiguration Planning for a Class of Modular Robots. International Symposium on Intelligent Systems and Advanced Manufacturing (SPIE), 246–257 (1999).

  • Castano, A., Shen, W. M., Will, P.: CONRO: Towards deployable robots with inter-robots metamorphic capabilities,. Autom. Rob. 8 (3), 309–324 (2000).

    Google Scholar 

  • Chen, I.M., Burdick, J.W.: Enumerating the non-isomorphic assembly configurations of modular robotic systems. Int. J. Robot. Res. 17 (7), 702–719 (1998).

    Article  Google Scholar 

  • Chen, I.M., Yang, G. L.: Automatic Model Generation for Modular Reconfigurable Robot Dynamics. J. Dyn. Syst. Meas. Control. 120 (3), 346–352 (1998).

    Article  Google Scholar 

  • Chiang, C.J., Chirikjian, G.S.: Modular robot motion planning using similarity metrics. Autonomous Robots. 10 (1), 91–106 (2001).

    Article  MATH  Google Scholar 

  • Chirikjian, G.S.: Kinematics of a metamorphic robotic system. IEEE International Conference on Robotics and Automation (ICRA), 449–455 (1994).

  • Christensen, D. J.: Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot. International Conference on Robotics and Automation (ICRA), 2539–2545 (2006).

  • Christensen, D. J., Brandt, D., Stoy, K., Schultz, U. P.: A unified simulator for self-reconfigurable robots. IEEE International Conference on Intelligent Robots and Systems (IROS), 870–876 (2008).

  • Chung, W. K., Han, J., Youm, Y., Kim, S.: Task based design of modular robot manipulator using efficient genetic algorithm. Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on pp. 507–512 (1997).

  • Collins, T., Ranasinghe, N. O., Shen, W. M.: ReMod3D: A high-performance simulator for autonomous, self-reconfigurable robots. IEEE International Conference on Intelligent Robots and Systems (IROS), 4281–4287 (2013).

  • Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots-design of the SMORES system. IEEE International Conference on Intelligent Robots and Systems (IROS), 4464–4469 (2012).

  • Donald, B.R., Levey, C.G., McGray, C.D., Paprotny, I., Rus, D.: An untethered, electrostatic, globally controllable MEMS micro-robot. J. Microelectromech. Syst. 15 (1), 1–15 (2006).

    Article  Google Scholar 

  • Dong, B., Li, Y.: Multi-objective-based configuration generation and optimization for reconfigurable modular robot. International Conference on Information Science and Technology (ICIST), 1006–1010 (2011).

  • Dprsim DPRSIM: The Dynamic Physical Rendering Simulator, http://www.pittsburgh.intel-research.net/dprweb/index.html, 2014.

  • Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular open robots simulation engine: Morse. IEEE International Conference on Robotics and Automation (ICRA), 46–51 (2011).

  • Escalera, J., Ferre, M., Aracil, R., Baca, J.: Knowledge-Based Intelligent Information and Engineering Systems (4693)(Apolloni, B., Howlett, R., Jain, L., eds.) Springer, Berlin (2007).

  • Faiña, A., Orjales, F., Bellas, F., Duro, R.J.: First steps towards a heterogeneous modular robotic architecture for intelligent industrial operation. IEEE Self-Reconfigurable Robotics Workshop, IEEE International Conference on Intelligent Robots and Systems (IROS) (2011).

  • Fang, Y., Zhang, H., Li, X., Chen, S.: Intelligent Robotics and Applications (ICIRA) 6424(Ding, Han, Xiong, Zhenhua, Zhu, Xiangyang, eds.) (2010).

  • Fitch, R., Butler, Z.: Million module march: Scalable locomotion for large self-reconfiguring robots. Int. J. Robot. Res. 27 (3–4), 331 (2008).

    Article  Google Scholar 

  • Fitch, R., Butler, Z., Rus, D.: Reconfiguration planning for heterogeneous self-reconfiguring robots. IEEE International Conference on Intelligent Robots and Systems (IROS), 32460–2467 (2003).

  • Fitch, R., Butler, Z., Rus, D.: Reconfiguration planning among obstacles for heterogeneous self-reconfiguring robots. IEEE International Conference on Robotics and Automation (ICRA), 117–124 (2005).

  • Fitch, R., McAllister, R.: Hierarchical Planning for Self-Reconfiguring Robots Using Module Kinematics. 10th International Symposium on Distributed Autonomous Robotic Systems (DARS) (2010).

  • Fitch, R., Stoy, K., Kernbach, S., Nagpal, R., Shen, W. M.: Reconfigurable modular robotics. Robotics and Autonomous Systems. 62 (7), 943–944 (2014).

    Article  Google Scholar 

  • Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Simulation, Modeling, and Programming for Autonomous Robots, Springer (2010).

  • Fu, G., Menciassi, A., Dario, P.: Design of a miniature switchable connection system for stochastic modular robots. Sens. Actuators A. 173 (1), 267–276 (2011).

    Article  Google Scholar 

  • Fukuda, T., Kawauchi, Y.: Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. IEEE International Conference on Robotics and Automation (ICRA), 662–667 (1990).

  • Fukuda, T., Nakagawa, S.: Approach To Dynamically reconfigurable robotic system. IEEE International Conference on Robotics and Automation (ICRA), 1581–1586 (1988).

  • Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self Organizing Robots Based on Cell Structures-CEBOT. Intelligent Robots, IEEE International Workshop on, 145-150 (1988).

  • Galloway, K.C., Jois, R., Yim, M.: Factory floor: A robotically reconfigurable construction platform. IEEE International Conference on Robotics and Automation (ICRA), 2467–2472 (2010).

  • Garcia, R. F. M., Hiller, J. D., Lipson, H.: A vacuum-based bonding mechanism for modular robotics. IEEE Workshop on Modular Robots: The State of the Art, IEEE International Conference on Robotics and Automation (ICRA) (2010).

  • Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: One centimeter modules for programmable matter through self-disassembly. IEEE International Conference on Robotics and Automation (ICRA), 2485–2492 (2010).

  • Gilpin, K., Kotay, K., Rus, D., Vasilescu, I.: Miche: Modular Shape Formation by Self-Dissasembly. IEEE International Conference on Robotics and Automation (ICRA), 2241–2247 (2007).

  • Gilpin, K., Rus, D.: Modular Robot Systems from Self-Assenbly to Self-Disassembly. IEEE Robot. Autom. Mag. 17 (3), 38–55 (2010).

    Article  Google Scholar 

  • Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer. 38 (6), 99–101 (2005).

    Article  Google Scholar 

  • Goldstein, S.C., Mowry, T.C.: Claytronics: An instance of programmable matter. In Wild and Crazy Ideas Session of ASPLOS, 2004.

  • Golestan, K., Asadpour, M., Moradi, H.: Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics, 83, 505–516 (2010).

  • Gonzalez-Gomez, J., Gonzalez-Quijano, J., Zhang, H., Abderrahim, M.: Toward the sense of touch in snake modular robots for search and rescue operations, IEEE Workshop on Modular Robots: The State of the Art. IEEE International Conference on Robotics and Automation (ICRA), 63–68 (2010).

  • Gonzalez-Gomez, J., Zhang, H., Boemo, E., Zhang, J.: Locomotion capabilities of a modular robot with eight pitch-yaw-connecting modules. 9th International Conference on Climbing and Walking Robots (2006).

  • Gonzlez-Gmez, J., Aguayo, E., Boemo, E.: Locomotion of a Modular Worm-like Robot using a FPGA-based embedded MicroBlaze Soft-processor. 7th International Conference on Climbing and Walking Robots (CLAWAR), 869–878 (2004).

  • Griffith, S. T.: Growing machines Massachusetts Institute of Technology, Phd. thesis, 2004.

  • Guan, E., Fu, Z., Yan, W., Jiang, D., Zhao, Y.: Self-reconfiguration Path Planning Design for M-Lattice Robot Based on Genetic Algorithm. Intelligent Robotics and Applications (ICIRA), 505–514 (2011).

  • Guan, Y., Jiang, L., Zhang, X.: Mechanical design and basic analysis of a modular robot with special climbing and manipulation functions. International Conference on Robotics and Biomimetics (ROBIO), 502–507 (2007).

  • Hamlin, G.J., Sanderson, A.C.: Tetrobot modular robotics: Prototype and experiments. IEEE International Conference on Intelligent Robots and Systems (IROS), 390–395 (1996).

  • Harrison, J., Vo, C., Lien, J.M.: Motion in Games 6459, 218-229(Boulic, R., Chrysanthou, Y., Komura, T., eds.) Springer, Berlin (2010).

  • Hirose, S., Shirasu, T., Fukushima, E.F.: Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robotics and Autonomous Systems. 17 (1), 107–118 (1996).

    Article  Google Scholar 

  • Hong, W., Wang, S., Shui, D.: Reconfigurable robot system based on electromagnetic design. International Conference on Fluid Power and Mechatronics (FPM), 570–575 (2011).

  • Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: Analogy with chemical kinetics. Artificial Life and Robotics. 4, 413–427 (1994).

    Article  Google Scholar 

  • Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., Endo, I.: Self-organizing collective robots with morphogenesis in a vertical plane. IEEE International Conference on Robotics and Automation (ICRA), 2858–2863 (1998).

  • Hossain, S.G.M., Nelson, C.A., Dasgupta, P.: Advances in Reconfigurable Mechanisms and Robots(Dai, J. S., Zoppi, M., Kong, X., eds.) Springer, London (2012).

  • Hou, F., Shen, W. M.: On the complexity of optimal reconfiguration planning for modular reconfigurable robots. International Conference on Robotics and Automation (ICRA), 2791–2796 (2010).

  • Hui, R., Kircanski, N., Goldenberg, A., Zhou, C., Kuzan, P., Wiercienski, J., Gershon, D., Sinha, P.: Design of the iris facility-a modular, reconfigurable and expandable robot test bed. IEEE International Conference on Robotics and Automation (ICRA), 155–160 (1993).

  • Inou, N., Kobayashi, H., Koseki, M.: Development of pneumatic cellular robots forming a mechanical structure. 7th International Conference on Control, Automation, Robotics and Vision (ICARCV), 63–68 (2002).

  • Inou, N., Minami, K., Koseki, M.: Group Robots Forming a Mechanical Structure-Development of slide motion mechanism and estimation of energy consumption of the structural formation. International Symposium on Computational Intelligence in Robotics and Automation, 874–879 (2003).

  • Jin, Y., Meng, Y.: Morphogenetic robotics: An emerging new field in developmental robotics. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41 (2), 145–160 (2011).

    Article  Google Scholar 

  • Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular ATRON: Modules for a self-reconfigurable robot. IEEE International Conference on Intelligent Robots and Systems (IROS), 2068–2073 (2004).

  • Kamimura, A., Kurokawa, H., Toshida, E., Tomita, K., Murata, S., Kokaji, S.: Automatic locomotion pattern generation for modular robots. International Conference on Robotics and Automation (ICRA), 714–720 (2003).

  • Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE Transactions on Mechatronics. 10 (3), 314–325 (2005).

    Article  Google Scholar 

  • Karagozler, M. E., Campbell, J. D., Fedder, G. K., Goldstein, S. C., Weller, M. P., Yoon, B. W.: Electrostatic latching for inter-module adhesion, power transfer, and communication in modular robots. IEEE International Conference on Intelligent Robots and Systems (IROS), 2779–2786 (2007).

  • Kawakami, A., Torii, A., Motomura, K., Hirose, S.: SMC Rover: Planetary Rover with transformable wheels. 41st SICE Annual Conference, 157–162 (2002).

  • Kephart, J. O., Chess, D. M.: The vision of autonomic computing. Computer. 36 (1), 41–50 (2003).

    Article  MathSciNet  Google Scholar 

  • Kernbach, S., Girault, B., Kernbach, O.: On Self-Optimized Self-Assembling of Heterogeneous Multi-robot. Organisms, Bio-Inspired Self-Organizing Robotic Systems Springer, 123-141. Edited by: Meng, Y., jin, Y. (2011,).

  • Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri, D., Winkler, L., Schmickl, T., Thenius, R.: Symbiotic robot organisms: REPLICATOR and SYMBRION projects. the 8th Workshop on Performance Metrics for Intelligent Systems (PerMIS), 62–69 (2008).

  • Khairallah, C.: Modular articulated robot structure. US Patents. 6 (323), 615 (2001).

    Google Scholar 

  • Kirby, B., Campbell, J., Aksak, B., Pillai, P., Hoburg, J., Mowry, T., Goldstein, S.C.: Catoms: Moving robots without moving parts. AAAI (Robot Exhibition) (2005).

  • Klavins, E.: Programmable self-assembly. Control Syst. 27 (4), 43–56 (2007).

    Article  Google Scholar 

  • Koseki, M. , Minami, K., Inou, N.: Distributed Autonomous Robotic Systems, 6, 139-148 (2007).

  • Kotay, K., Rus, D.: Algorithms for self-reconfiguring molecule motion planning. International Conference on Intelligent Robots and Systems (IROS), 2184–2193 (2000).

  • Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule. IEEE International Conference on Robotics and Automation (ICRA), 424–431 (1998).

  • Kuo, V., Fitch, R.: A multi-radio architecture for neighbor-to-neighbor communication in modular robots. IEEE International Conference on Robotics and Automation (ICRA), 5387–5394 (2011).

  • Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.: M-TRAN II: Metamorphosis from a four-legged walker to a caterpillar. IEEE International Conference on Intelligent Robots and Systems (IROS), 2454–2459 (2003).

  • Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Murata, S., Kokaji, S.: Self-reconfigurable modular robot (M-TRAN) and its motion design. International Conference on. Control, Automation, Robotics and Vision (ICARCV), 51–56 (2002).

  • Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure and experiments. IEEE International Conference on Intelligent Robots and Systems (IROS), 860–865 (1998).

  • Kurokawa, H., Tomita, K., Yoshida, E., Murata, S., Kokaji, S.: Motion simulation of a modular robotic system. International Conference on Industrial Electronics Society (IECON), 2473–2478 (2000).

  • Kurokawa, H., Yoshida, E., Tomita, K., Kamimura, A., Murata, S., Kokaji, S.: Self-reconfigurable M-TRAN structures and walker generation. Robot. Auton. Syst. 54 (2), 142–149 (2006).

    Article  Google Scholar 

  • Kwok, S. W., Morin, S. A., Mosadegh, B., So, J., Shepherd, R. F., Martinez, R. V., Smith, B., Simeone, F. C., Stokes, A. A., Whitesides, G. M.: Magnetic Assembly of Soft Robots with Hard Components, Advanced Functional Materials, 1616-3028, 2013.

  • Lal, S., Yamada, K., Endo, S.: Emergent Motion Characteristics of a Modular Robot through Genetic Algorithm, Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 225-234, 2008.

  • Lal Tummala, R., Mukherjee, R., Aslam, D., Xi, N., Mahadevan, S., Weng, J.: Reconfigurable adaptable micro-robot. International Conference on Systems, Man, and Cybernetics (SMC), 687–691 (1999).

  • Larkworthy, T., Ramamoorthy, S.: An efficient algorithm for self-reconfiguration planning in a modular robot. International Conference on Robotics and Automation (ICRA), 5139–5146 (2010).

  • Lee, E., Yang, J., Jolda, M., Wood, R.: Cellular slime mold robot. the International Conference on Robotics and Automation Workshop, Modular Robots: State of the Art, 30–35 (2010).

  • Lin, Z., Wang, T., Gao, Q., Liu, Y.: Design of robot platform based on CAN bus. International Conference Electrical and Control Engineering (ICECE), 645–648 (2011).

  • Liu, J. G., Wang, Y., Ma, S., Li, B.: Analysis of stairs-climbing ability for a tracked reconfigurable modular robot, Security and Rescue Robotics Workshop, International Safety, IEEE, 36-41, 2005.

  • Liu, J. G., Wang, Y.C., Li, B., Ma, S.G., Tan, D.L.: Center-configuration selection technique for the reconfigurable modular robot. Science in China Series F: Information Sciences. 50 (5), 697–710 (2007).

    Article  MATH  Google Scholar 

  • Lyder, A., Garcia, R., Stoy, K.: Mechanical design of odin, an extendable heterogeneous deformable modular robot. IEEE International Conference on Intelligent Robots and Systems (IROS), 883–888 (2008).

  • Lyder, A., Garcia, R. F. M., Stoy, K.: Genderless connection mechanism for modular robots introducing torque transmission between modules (2010).

  • Mamei, M., Zambonelli, F.: Field-based coordination for pervasive multiagent systems 175. Springer, New York (2006).

    Google Scholar 

  • Mampel, J., Gerlach, K., Schilling, C., Witte, H.: A modular robot climbing on pipe-like structures. 4th International Conference on Autonomous Robots and Agents (ICARA), 87–91 (2009).

  • Marbach, D., Ijspeert, A.J.: Co-evolution of configuration and control for homogenous modular robots. the Eighth Conference on Intelligent Autonomous Systems (IAS), 712–719 (2004).

  • Meng, Y., Zhang, Y., Sampath, A., Jin, Y., Sendhoff, B.: Cross-ball: A new morphogenetic self-reconfigurable modular robot. IEEE International Conference on Robotics and Automation (ICRA), 267–272 (2011).

  • Merali, R., Long, D.: Actuated Responsive Truss, IEEE Workshop on Modular Robots: The State of the Art, IEEE International Conference on Robotics and Automation (ICRA), 2010.

  • Miao, Y., Yan, G., Lin, Z.: A distributed reconfiguration strategy for target enveloping with hexagonal metamorphic modules. IEEE International Conference on Robotics and Automation (ICRA), 4804–4809 (2011).

  • Michel, O.: WebotsTM: Professional mobile robot simulation, 2004. Arxiv preprint arXiv: http://arxiv.org/abs/cs/0412052.

  • Mihaylova, L., Lefebvre, T., Bruyninckx, H., Gadeyne, K., Schutter, J. D.: Active Sensing for Robotics - A Survey. 5th International Conference on Numerical Methods and Applications, 316–324 (2002).

  • Mintchev, S., Stefanini, C., Girin, A., Marrazza, S., Orofino, S., Lebastard, V., Manfredi, L., Dario, P., Boyer, F.: An underwater reconfigurable robot with bioinspired electric sense. IEEE International Conference on Robotics and Automation (ICRA), 1149–1154 (2012).

  • Miyashita, S., Hadorn, M., Hotz, P.: Agent and Multi-Agent Systems: Technologies and Applications(Nguyen, N., Grzech, A., Howlett, R., Jain, L., eds.) Springer, Berlin (2007).

  • Miyashita, S., Kessler, M., Lungarella, M.: How morphology affects self-assembly in a stochastic modular robot. IEEE International Conference on Robotics and Automation (ICRA), 3533–3538 (2008).

  • Mobes, S., Laurent, G.J., Clevy, C., Le Fort-Piat, N., Piranda, B., Bourgeois, J.: Toward a 2D Modular and Self-Reconfigurable Robot for Conveying Microparts, Second Workshop on Design, Control and Software Implementation for Distributed MEMS (dMEMS), 2012.

  • Möckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., Ijspeert, A.: Climbing and Walking Robots(Tokhi, M. O., Virk, G. S., Hossain, M. A., eds.) Springer, Berlin (2006).

  • Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., Ijspeert, A.J.: Exploring adaptive locomotion with YaMoR, a novel autonomous modular robot with Bluetooth interface. Industrial Robot: An International Journal. 33 (4), 285–290 (2006).

    Article  Google Scholar 

  • Mondada, F., Guignard, A., Bonani, M., Bar, D., Lauria, M., Floreano, D.: Swarm-bot: From concept to implementation. IEEE International Conference on Intelligent Robots and Systems (IROS), 1626–163 (2003).

  • Moreno, R., Gomez, J.: Central pattern generators and hormone inspired messages: A hybrid control strategy to implement motor primitives on chain type modular reconfigurable robots. IEEE International Conference on Robotics and Automation (ICRA), 1014–1019 (2011).

  • Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system. IEEE Robot. Autom. Mag. 14 (4), 56–63 (2007).

    Article  Google Scholar 

  • Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robot. Autom. Mag. 14 (1), 71–78 (2007a).

  • Murata, S., Kurokawa, H.: Self-reconfigurable robots: Shape-Changing Cellular Robots. IEEE Robot. Autom. Mag. 14 (1), 71–78 (2007b).

  • Murata, S., Kurokawa, H.: Artificial Self-assembly and Self-repair, Self-Organizing Robots, Springer Tracts in Advanced Robotics, Vol. 77. Springer, Berlin (2012a).

  • Murata, S., Kurokawa, H., The Future of Self-Organizing Robots, Self-Organizing Robots, Vol. 77. Springer, Berlin (2012b).

  • Murata, S., Kurokawa, H.: Self-Organizing Robots. Springer (2012c).

  • Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. IEEE International Conference on Robotics and Automation (ICRA), 441–448 (1994).

  • Onal, C. D., Rus, D.: A modular approach to soft robots. IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 1038–1045 (2012).

  • Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive software. Intelligent Systems and their Applications. 14 (3), 54–62 (1999).

    Article  Google Scholar 

  • Ostergaard, E. H., Christensen, D. J., Eggenberger, P., Taylor, T., Ottery, P., Lund, H. H.: Hydra: From cellular biology to shape-changing artefacts. In: Artificial Neural Networks: Biological Inspirations-ICANN 2005, pp. 275–281, 2005.

  • Paez, L., Melo, K., Parra, C.: Center of mass displacements using rolling gaits for modular robots on the outside of pipes. Colombian Conference on Automatic Control and Industry Applications (LARC), 1–6 (2011).

  • Pagala, P., Ferre, M., Armada, M.: Design of Modular Robot System for Maintenance Tasks in Hazardous Facilities and Environments. First Iberian Robotics Conference, 185–197 (2014).

  • Pamecha, A., Chirikjian, G.: A useful metric for modular robot motion planning International Conference on Robotics and Automation (ICRA), 1996.

  • Pamecha, A., Ebert-Uphoff, I., Chirikjian, G.: Useful metrics for modular robot motion planning. IEEE J. Robot. Autom. 13 (4), 531–545 (1997).

    Article  Google Scholar 

  • Park, M., Chitta, S., Teichman, A., Yim, M.: Automatic configuration recognition methods in modular robots. Int. J. Robot. Res. 27 (3–4), 403 (2008).

    Article  Google Scholar 

  • Pouya, S., Van Den Kieboom, J., Spröwitz, A., Ijspeert, A.: Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question. IEEE International Conference on Intelligent Robots and Systems (IROS), 514–520 (2010).

  • Qiao, G., Song, G., Wang, W., Zhang, Y., Wang, Y.: Design and Implementation of a Modular Self-reconfigurable Robot. Int. J. Adv. Robot. Syst. 11, 1729–8806 (2014).

    Google Scholar 

  • Ramchurn, V., Richardson, R. C., Nutter, P.: ORTHO-BOT: a modular reconfigurable space robot concept, Climbing and Walking Robots(Tokhi, M.O., Virk, G.S., Hossain, M. A., eds.) Springer, Berlin (2006).

  • Rasakatla, S., Krishna, K.M., Indurkhya, B.: Mod-Leg a modular legged robotic system, International Conference and Exhinition on Computer Graphics and Interactive Techniques (SIGGRAPH), 2010.

  • Roehr, T. M., Cordes, F., Kirchner, F.: Reconfigurable Integrated Multirobot Exploration System (RIMRES): Heterogeneous Modular Reconfigurable Robots for Space Exploration. J. Field Rob. 31 (1), 3–34 (2014).

    Article  Google Scholar 

  • Romanishin, J. W., Gilpin, K., Rus, D.: M-Blocks: Momentum-driven, Magnetic Modular Robots, IEEE International Conference on Intelligent Robots and Systems (IROS), 2013.

  • Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature. 440 (7082), 297–302 (2006).

    Article  Google Scholar 

  • Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares, ACM symposium on Theory of computing (STOC), 459–468, 2000.

  • Rubenstein, M., Nagpal, R.: Kilobot: A Robotic Module for Demonstrating Behaviors in a Large Scale (2 10 Units) Collective. IEEE Workshop on Modular Robots: The State of the Art, IEEE International Conference on Robotics and Automation (ICRA), Institute of Electrical and Electronics Engineers (2010).

  • Rus, D., Butler, Z., Kotay, K., Vona, M.: Self-reconfiguring robots. Communications of the ACM. 45 (3), 39–45 (2002) [ http://dl.acm.org/citation.cfm?id=504729.504752].

  • Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit modules. Auton. Robot. 10 (1), 107–124 (2001).

    Article  MATH  Google Scholar 

  • Ryland, G. G., Cheng, H. H.: Design of iMobot, an intelligent reconfigurable mobile robot with novel locomotion. IEEE International Conference on Robotics and Automation (ICRA), 60–65 (2010).

  • Sadjadi, H., Mohareri, O., Al-Jarrah, M.A., Assaleh, K.: Design and Implementation of HexBot: A Modular Self-Reconfigurable Robotic System. In: Journal of Franklin Institute (2011).

  • Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS). 4 (2), 14 (2009).

    Article  Google Scholar 

  • Salemi, B., Moll, M., Shen, W. M.: SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. IEEE International Conference on Intelligent Robots and Systems (IROS), 3636–3641 (2006).

  • Savage, N.: Soft robots for hard problems. IEEE Spectr. 49 (5), 13–13 (2012).

    Article  MathSciNet  Google Scholar 

  • Schmitz, D., Khosla, P., Kanade, T.: CMU reconfigurable modular manipulator system, Tech, Report The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pa, 1988.

  • Schweikardt, E.: Modular robotics studio, Fifth international conference on Tangible, embedded, and embodied (TEI ), pp. 353–356, 2011.

  • Shen, W. M., Bogdanowicz, J., Chun, W., Yim, M., Will, P.M., Sims, M., Colombano, S., Kortenkamp, D., Vanderzyl, S., Baumgartener, E.: Superbots Modular, Multifunctional, Reconfigurable Robotic System for Space Exploration, LPI Contributions: 1287 80, 2005.

  • Shen, W.M., Chiu, H.C., Rubenstein, M., Salemi, B.: Rolling and climbing by the multifunctional superbot reconfigurable robotic system, American Institute of Physics (AIP) 839–848, 2008.

  • Shen, W. M., Krivokon, M., Chiu, H. C. H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode Locomotion via SuperBot Robots. IEEE International Conference on Robotics and Automation (ICRA), 2552–2557 (2006).

  • Shen, W. M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and distributed control for conro self-reconfigurable robots. IEEE Robot. Autom. Mag. 18 (5), 700–712 (2002).

    Article  Google Scholar 

  • Shen, W. M., Will, P., Khoshnevis, B.: Self-assembly in space via self-reconfigurable robots. IEEE International Conference on Robotics and Automation (ICRA), 2516–2521 (2003).

  • Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature. 427 (6975), 618–621 (2004).

    Article  Google Scholar 

  • Shimizu, M., Ishiguro, A., Kawakatsu, T.: A modular robot that exploits a spontaneous connectivity control mechanism. IEEE International Conference on Intelligent Robots and Systems (IROS), 1899–1904 (2005).

  • Shimizu, M., Suzuki, K.: A self-repairing structure for modules and its control by vibrating actuation mechanisms. IEEE International Conference on Robotics and Automation (ICRA), 4281–4286 (2009).

  • Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture. IEEE International Conference on Robotics and Automation (ICRA), 4259–4264 (2009).

  • Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A.J.: Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot, Robot. Auton. Syst., 2013.

  • Stoy, K.: Controlling self-reconfiguration using cellular automata and gradients. the 8th international conference on intelligent autonomous systems (IAS-8), 693–702 (2004).

  • Stoy, K.: The deformatron robot: a biologically inspired homogeneous modular robot. IEEE International Conference on Robotics and Automation (ICRA), 2527–2531 (2006a).

  • Stoy, K.: How to Construct Dense Objects with Self-Recondfigurable Robots, European Robotics Symposium, 27–37, 2006b.

  • Stoy, K., Brandt, D., Christensen, D. J.: Self-reconfigurable robots: An introduction, The MIT Press, 2010.

  • Stoy, K., Kurokawa, H.: Current Topics in Classic Self-reconfigurable Robot Research. IEEE Self-Reconfigurable Robotics Workshop, IEEE International Conference on Intelligent Robots and Systems (IROS) (2011).

  • Stoy, K., Nagpal, R.: Distributed Autonomous Robotic Systems, Vol. 6. Springer (2007).

  • Su, H.J., Castro, C.E., Marras, A.E., Hudoba, M.: Advances in Reconfigurable Mechanisms and Robots I. Springer, London (2012).

    Google Scholar 

  • Suh, J.W., Homans, S.B., Yim, M.: Telecubes: Mechanical design of a module for self-reconfigurable robotics. EEE International Conference on Robotics and Automation (ICRA), 4095–4101 (2002).

  • Terada, Y., Murata, S.: Modular stucture assembly using blackboard path planning systems, International Symposium on Automation and Robotics in Construction, pp. 852–857, 2006.

  • Thrun, S.: Probabilistic robotics. Communications of the ACM - Robots: intelligence, versatility, adaptivity. 45 (3), 1–5 (2002).

    Google Scholar 

  • Tokashiki, H., Amagai, H., Endo, S., Yamada, K., Kelly, J.: Development of a transformable mobile robot composed of homogeneous gear-type units. IEEE International Conference on Intelligent Robots and Systems (IROS), 1602–1607 (2003).

  • Tolley, M. T., Hiller, J., Lipson, H.: New Horizons in Evolutionary Robotics(Doncieux, S., Bredèche, N., Mouret, J.-B., eds.) Springer, Berlin (2011).

  • Tolley, M.T., Krishnan, M., Erickson, D., Lipson, H.: Dynamically programmable fluidic assembly. Appl. Phys. Lett. 93 (25), 254105–254105-3 (2008).

    Article  Google Scholar 

  • Tolley, M.T., Lipson, H.: Fluidic manipulation for scalable stochastic 3d assembly of modular robots. IEEE International Conference on Robotics and Automation (ICRA), 2473–2478 (2010).

  • Tolley, M. T., Lipson, H.: On-line assembly planning for stochastically reconfigurable systems. Int. J. Robot. Res. 30 (13), 1566–1584 (2011a).

  • Tolley, M. T., Lipson, H.: Programmable 3D Stochastic Fluidic Assembly of cm-scale modules. IEEE International Conference on Intelligent Robots and Systems (IROS), 4366–4371 (2011b).

  • Trianni, V., Dorigo, M.: Self-organisation and communication in groups of simulated and physical robots. Biol. Cybern. 95 (3), 213–231 (2006).

    Article  MATH  Google Scholar 

  • Tuci, E., Groß, R., Trianni, V., Mondada, F., Bonani, M., Dorigo, M.: Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS). 1 (2), 115–150 (2006).

    Article  Google Scholar 

  • Ünsal, C., Kiliççöte, H., Khosla, P.: I (CES)-cubes: a modular self-reconfigurable bipartite robotic system. Sensor Fusion and Decentralized Control in Robotic Systems (SPIE), 258–269 (1999).

  • Ünsal, C., Kiliççöte, H., Khosla, P.K.: A modular self-reconfigurable bipartite robotic system: Implementation and motion planning. Auton. Robot. 10 (1), 23–40 (2001).

    Article  MATH  Google Scholar 

  • Van Hornweder, K. S.: A Chronological Survey of Modular Self-Reconfigurable Robots, Tech. Report, Department of Electrical Engineering & Computer Science University of Tennessee, Knoxville, 2011.

  • Vona, M., Rus, D.L.: A physical implementation of the self-reconfiguring crystalline robot. IEEE International Conference on Robotics and Automation (ICRA), 1726–1733 (2000).

  • Wang, M., Ma, S., He, X., Li, B., Wang, Y.: Motion planning for a reconfigurable robot to cross an obstacle. the International Conference on Mechatronics and Automation, 1291–1296 (2006).

  • Wei, H., Chen, Y., Tan, J., Wang, T.: Sambot: A Self-Assembly Modular Robot System. IEEE Transactions on Mechatronics. 16 (4), 745–757 (2011).

    Article  Google Scholar 

  • White, P.J., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. IEEE International Conference on Robotics and Automation (ICRA), 2888–2893 (2004).

  • White, P. J., Yim, M.: Scalable modular self-reconfigurable robots using external actuation. IEEE International Conference on Intelligent Robots and Systems (IROS), 2773–2778 (2007).

  • White, P. J., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Robotics: Science and Systems, 2005.

  • Will, P. M., Castaño, A., Shen, W. M.: Robot modularity for self-reconfiguration. Sensor Fusion and Decentralized Control in Robotic Systems, International Society for Optics and Photonics, 236–245 (1999).

  • Winkler, L., Wörn, H.: Symbricator3D-A distributed simulation environment for modular robots. Springer, Berlin, 1266–1277 (2009).

  • Wolfe, K. C., Moses, M. S., Kutzer, M. D. M., Chirikjian, G.S.: M3 Express: A low-cost independently-mobile reconfigurable modular robot. IEEE International Conference on Robotics and Automation (ICRA), 2704–2710 (2012).

  • Wong, S., Walter, J., Deterministic distributed algorithm for self-reconfiguration of modular robots from arbitrary to straight chain configurations. IEEE International Conference on Robotics and Automation (ICRA), 537–543 (2013).

  • Wu, C., Wang, X., Zhuang, G., Zhao, M., Ge, T.: Motion of an underwater self-reconfigurable robot with tree-like configurations. Journal of Shanghai Jiaotong University. 18, 598–605 (2013).

    Article  Google Scholar 

  • Wu, Q., Luo, Y., Chi, X., Lou, X.: Motion error analysis of modular self-reconfigurable robot M-Cubes based screw theory, International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011.

  • Yim, M.: A reconfigurable modular robot with many modes of locomotion, International Conference on Advanced Mechatronics, pp. 283–288, 1993.

  • Yim, M.: Locomotion with a unit-modular reconfigurable robot, Ph.D. thesis stanford university, 1994.

  • Yim, M., Duff, D.G., Roufas, K.: Modular reconfigurable robots, an approach to urban search and rescue, 1st International Workshop on Human Welfare Robotics Systems (HWRS), 69–76, 2000a.

  • Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot. IEEE International Conference on Robotics and Automation (ICRA), 514–520 (2000b).

  • Yim, M., Eldershaw, C., Zhang, Y., Duff, D.: Springer Tracts in Advanced Robotics IX(Ang, M., Khatib, O., eds.) Springer, Berlin (2006).

  • Yim, M., Lamping, J., Mao, E., Chase, J.G.: Rhombic dodecahedron shape for self-assembling robots, Tech. Report Xerox PARC, SPL TechReport P9710777, 1997.

  • Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.: Modular reconfigurable robots in space applications. Auton. Robot. 14 (2), 225–237 (2003).

    Article  MATH  Google Scholar 

  • Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14 (1), 43–52 (2007).

    Article  Google Scholar 

  • Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M , Taylor, C.J.: Towards robotic self-reassembly after explosion. IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2767–2772 (2007b).

  • Yim, M., White, P. J., Park, M., Sastra, J.: Encyclopedia of Complexity and Systems Science (2009).

  • Yoneda, K., Suzuki, I., Yamamoto, M., Furukawa, M.: Acquisition of adaptive behavior for virtual modular robot using evolutionary computation, Advances in Artificial Life. Darwin Meets von Neumann, Springer, pp. 181–188, 2011.

  • Yoon, Y., Rus, D.: Shady3d: A robot that climbs 3d trusses. IEEE International Conference on Robotics and Automation (ICRA), 4071–4076 (2007).

  • Yoshida, E., Kokaji, S., Murata, S., Kurokawa, H., Tomita, K.: Miniaturized self-reconfigurable system using shape memory alloy. IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1579–1585 (1999).

  • Yoshida, E., Kurokawa, H., Kamimura, A., Murata, S., Tomita K., Kokaji, S.: Distributed Autonomous Robotic Systems, Springer, Vol. 6 (2007).

  • Yoshida, E., Murata, S., Kokaji, S., Tomita, K., Kurokawa, H.: Micro self-reconfigurable robotic system using shape memory alloy. Distributed Autonomous Robotic Systems. 4, 145–154 (2000).

    Google Scholar 

  • Yu, C.H., Haller, K., Ingber, D., Nagpal, R.: Morpho: A self-deformable modular robot inspired by cellular structure. IEEE International Conference on Intelligent Robots and Systems (IROS), 3571–3578 (2008).

  • Yu, C.H., Nagpal, R.: Self-adapting modular robotics: A generalized distributed consensus framework. IEEE International Conference on Robotics and Automation (ICRA), 1881–1888 (2009).

  • Yu, C.H., Nagpal, R., Belisle, R.: Mechanical Design and Locomotion of Modular-Expanding Robots. IEEE IEEE Workshop on Modular Robots: The State of the Art, IEEE International Conference on Robotics and Automation (ICRA) (2010).

  • Yu, C.H., Willems, F.X., Ingber, D., Nagpal, R.: Self-organization of environmentally-adaptive shapes on a modular robot. IEEE International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 2353–2360 (2007).

  • Yurke, B., Turberfield, A.J., Mills Jr, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature. 406 (6796), 605–608 (2000).

    Article  Google Scholar 

  • Zhang, H., Gonzalez-Gomez, J., Me, Z., Cheng, S., Zhang, J.: Development of a low-cost flexible modular robot GZ-I. International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 223–228 (2008).

  • Zhang, L., Zhao, J., Cai, H.G.: A substructure based motion planning method for a modular self-reconfigurable robot. International Workshop on Robot Motion and Control (RoMoCo), IEEE, 371–376 (2004).

  • Zhao, J., Cui, X., Zhu, Y., Tang, S.: A new self-reconfigurable modular robotic system UBot: Multi-mode locomotion and self-reconfiguration. IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 1020–1025 (2011).

  • Zhu, W.H., Lamarche, T.: Modular robot manipulators based on virtual decomposition control. IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 2235–2240 (2007).

  • Zhu, Y., Wang, X., Cui, X., Yin, J., Zhao, J.: Research on Locomotive Evolution Based on Worm-Shaped Configuration of Self-reconfigurable Robot HitMSR II, Electrical Power Systems and Computers, Springer, 2011.

  • Zykov, V., Lipson, H.: Experiment Design for Stochastic Three-Dimensional Reconfiguration of Modular Robots. IEEE Self-Reconfigurable Robotics Workshop, IEEE International Conference on Intelligent Robots and Systems (IROS) (2007).

  • Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature. 435 (7039), 163–164 (2005).

    Article  Google Scholar 

  • Zykov, V., Phelps, W., Lassabe, N., Lipson, H.: Molecubes extended: Diversifying capabilities of open-source modular robotics, IEEE Self-Reconfigurable Robotics Workshop. IEEE International Conference on Intelligent Robots and Systems (IROS) (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellips Masehian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadzadeh, H., Masehian, E. & Asadpour, M. Modular Robotic Systems: Characteristics and Applications. J Intell Robot Syst 81, 317–357 (2016). https://doi.org/10.1007/s10846-015-0237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0237-8

Keywords

Navigation