Skip to main content
Log in

Effect of annealing temperature on the structure and dielectric characterization of ITO thin films on a boro-float substrate prepared by radio frequency sputtering

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effect of annealing temperature (Ta= 200, 250, and 300 °C) on the structural properties, ac conductivity, and complex dielectric constants (\({\epsilon }^{{\prime }}\) and \({\epsilon }^{{\prime }{\prime }}\)) of indium-doped tin oxide (ITO) thin films (~ 90 nm thick)/0.5 mm boro-float substrates (BFS) synthesized by radio frequency (RF) sputtering is investigated. The X-ray diffraction (XRD) examination demonstrated that indium was successfully substituted with tin atoms to form ITO films and the crystallite size for the cubic phase, as well as particle size, were impacted by Ta. The real part of complex dielectric constants (\({\epsilon }^{{\prime }}\)) was significantly reduced for all ITO/BFS from the range of 2.7 × 104–5.1 × 104 to 5.3–19 as the frequency (f) was increased to 0.25 Hz, while it remained constant for further increases in f. The value of \({\epsilon }^{{\prime }}\) for the as-prepared ITO/BFS was increased as Ta increased up to 250 °C, then was decreased at Ta=300 °C. A similar finding was detected for the loss factor with no observation of any relaxation peaks. The Q-factor was increased for all ITO/BFS as f increased to 100 Hz and then was reduced with increasing f up to 20 MHz, while steadily increasing with Ta. The deduced frequency exponent is greater than 0.5 for the ITO/BFS, indicating their electronic conduction nature. The density of the localized states and hopping frequency of the ITO/BFS were increased by annealing at 200 °C, meanwhile was decreased for Ta = 300 °C. The binding energy was decreased from 0.647 eV for the as-prepared ITO/BFS to 0.518 eV by annealing at 200 °C, meanwhile was increased to 0.74 and 0.863 eV for Ta equals 250, and 300 °C, respectively. The Cole-Cole plots revealed a single semicircular arc for all films, and their corresponding equivalent circuit was analyzed. The equivalent bulk resistance was gradually decreased by annealing in the range of 200–300 °C, whereas the equivalent capacitance was increased. The resistance of grains and resistance of grain boundaries of the as-prepared ITO/BFS was gradually decreased by increasing Ta to 250 °C, while it was increased for Ta = 300 °C. These outcomes recommended the RF sputtered ITO/BFS for high-frequency devices, integrated circuits, and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not Applicable.

5. References

  1. M. Guizzardi, S. Bonfadini, L. Moscardi, I. Kriegel, F. Scotognella, L. Criante, Phys. Chem. Chem. Phys. 22(13), 6881–6887 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. M.A. Alim, M.R. Repon, T. Islam, K.F. Mishfa, M.A. Jalil, M.D. Aljabri, M.M. Rahman, ChemistrySelect 7(23), e202201557 (2022)

  3. C. Nefzi, B. Yahmadi, N.E. Guesmi, N. Kamoun-Turki, S.A. Ahmed, J. Mol. Struct. 1251, 131943 (2022)

    Article  CAS  Google Scholar 

  4. R.M. Ibrahim, J. Umm Al-Qura Univ. Appll. Sci. 1–19 (2024). https://doi.org/10.1007/s43994-023-00098-7

  5. S. Karthik Kannan, P. Thirunavukkarasu, R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, A.M. Ali, M. Shkir, J. Electron. Mater. 50, 3937–3948 (2021)

    Article  CAS  Google Scholar 

  6. D.H. Lee, K.D. Vuong, R.A. Condrate Sr, X.W. Wang, Mater. Lett. 28(1–3), 179–182 (1996)

    Article  CAS  Google Scholar 

  7. W.F. Wu, B.S. Chiou, Appl. Surf. Sci. 68(4), 497–504 (1993)

    Article  CAS  Google Scholar 

  8. C.H.L. Weijtens, P.A.V. Loon, Thin Solid Films. 196(1), 1–10 (1991)

    Article  CAS  Google Scholar 

  9. Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, Y. Zheng, Mater. Sci. Semicond. Process. 26, 588–592 (2014)

    Article  CAS  Google Scholar 

  10. N.M. Ahmed, F.A. Sabah, H.I. Abdulgafour, A. Alsadig, A. Sulieman, M. Alkhoaryef, Results Phys. 13, 102159 (2019)

    Article  Google Scholar 

  11. A.M. Abd-Elnaiem, A. Hakamy, J. Mater. Sci. Mater. Electron. 3330, 23293 (2022)

    Article  Google Scholar 

  12. M. Ahmed, A. Bakry, A. Qasem, H. Dalir, Opt. Mater. 113, 110866 (2021)

    Article  CAS  Google Scholar 

  13. H. Askari, H. Fallah, M. Askari, M.C. Mohmmadieyh, arXiv preprint arXiv:1409.5293 (2014). https://doi.org/10.48550/arXiv.1409.5293

  14. C.W. Chen, Y.C. Lin, C.H. Chang, P. Yu, J.M. Shieh, C.L. Pan, IEEE J. Quantum Electron. 46(12), 1746–1754 (2010)

    Article  CAS  Google Scholar 

  15. E.A. Alwan, A. Kiourti, J.L. Volakis, IEEE Access. 3, 648–652 (2015)

    Article  Google Scholar 

  16. H. Jin, E. Debroye, M. Keshavarz, I.G. Scheblykin, M.B. Roeffaers, J. Hofkens, J.A. Steele, Mater. Horiz. 7(2), 397–410 (2020)

    Article  CAS  Google Scholar 

  17. A. Sedky, N. Afify, A.M. Ali, H. Algarni, Appl. Phys. A 128(2), 102 (2022)

    Article  CAS  Google Scholar 

  18. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, J. Appl. Phys. 112(6), 064506 (2012)

    Article  Google Scholar 

  19. S.C. Baral, P. Maneesha, E.G. Rini, S. Sen, Prog Solid State Ch. 72, 100429 (2023)

    Article  CAS  Google Scholar 

  20. K. Saravanakumar, P. Sakthivel, R.K. Sankaranarayanan, Spectrochim Acta - A: Mol. Biomol. Spectrosc. 267, 120487 (2022)

    Article  CAS  PubMed  Google Scholar 

  21. K. Irshad, M.T. Khan, A. Murtaza, Phys. B: Condens. 543, 1–6 (2018)

    Article  CAS  Google Scholar 

  22. J. Singh, R.C. Singh, J. Mol. Struct. 1215, 128261 (2020)

    Article  CAS  Google Scholar 

  23. L.K. Smirani, M. Kumari, S.H. Ahammad, M.A. Hossain, M.G. Daher, A.N.Z. Rashed, A. Ibrahim, K.M. Abohassan, A. Panda, J. Opt. Commun. (2022). https://doi.org/10.1515/joc-2022-0129

    Article  Google Scholar 

  24. M. Morad, T.M. Habeebullah, I. Althagafi, B.H. Asghar, A.A. Bayazeed, T.M. Bawazeer, A.M. Al-Solimy, N. El-Metwaly, Res. Chem. Intermed. 46, 4543–4562 (2020)

    Article  CAS  Google Scholar 

  25. A.M. El Nahrawy, A.B. Abou Hammad, A.M. Youssef, A.M. Mansour, A.M. Othman, Appl. Phys. A 125, 46 (2019)

    Article  Google Scholar 

  26. D.K. Kaushik, K.U. Kumar, A. Subrahmanyam, AIP Adv. 7(1), 015109 (2017)

    Article  Google Scholar 

  27. J.H. Park, C. Buurma, S. Sivananthan, R. Kodama, W. Gao, T.A. Gessert, Appl. Surf. Sci. 307, 388–392 (2014)

    Article  CAS  Google Scholar 

  28. R.Y. Yang, C.J. Chu, Y.M. Peng, H.J. Chueng, Adv. Mater. Sci. Eng. 2012 (2012). https://doi.org/10.1155/2012/741561

  29. G. Shao, X. Wu, Y. Kong, S. Cui, X. Shen, C. Jiao, J. Jiao, Surf. Coat. Technol. 270, 154–163 (2015)

    Article  CAS  Google Scholar 

  30. T.G.V.M. Rao, A.R. Kumar, K. Neeraja, N. Veeraiah, M.R. Reddy, J. Alloys Compd. 557, 209–217 (2013)

    Article  CAS  Google Scholar 

  31. M. Akram, A.T. Saleh, W.A.W. Ibrahim, A.S. Awan, R. Hussain, Ceram. Int. 42(7), 8613–8619 (2016)

    Article  CAS  Google Scholar 

  32. M. Thirumoorthi, J.T.J. Prakash, J. Asian Ceram. Soc. 4(1), 124–132 (2016)

    Article  Google Scholar 

  33. S. Selvakumar, R. Murugaraj, E. Viswanathan, S. Sankar, K. Sivaji, J. Mol. Struct. 1056, 152–156 (2014)

    Article  Google Scholar 

  34. X. Wang, Y. Zhang, Mater. Lett. 188, 257–259 (2017)

    Article  CAS  Google Scholar 

  35. A. Sedky, A.M. Ali, H. Algarni, Opt. Quantum Electron. 54(6), 376 (2022)

    Article  CAS  Google Scholar 

  36. A. Sedky, M.I. Youssif, T.A. El-Brolossy, Nat. Sci. 14(2), 66–73 (2016)

    Google Scholar 

  37. A.Q. Abdullah, N.A. Ali, S.I. Hussein, A. Hakamy, A.M. Abd-Elnaiem, J. Inorg. Organomet. Polym. Mater. 33, 3882–3893 (2023)

    Article  CAS  Google Scholar 

  38. A. Eroğlu, A.D.E.M. Tataroğlu, Ş. Altındal, Microelectron. Eng. 91, 154–158 (2012)

    Article  Google Scholar 

  39. H. Bouaamlat, N. Hadi, N. Belghiti, H. Sadki, M.N. Bennani, F. Abdi, T.D. Lamcharfi, M. Bouachrine, M. Abarkan, Adv. Mater. Sci. Eng. 1–8 (2020). https://doi.org/10.1155/2020/8689150

  40. D.A. Nasrallah, E.G. El-Metwally, A.M. Ismail, Polym. Adv. Technol. 323, 1214 (2021)

    Article  Google Scholar 

  41. N.C.R. Babu, M.A. Valente, N.N. Rao, M.P.F. Graça, G.N. Raju, M. Piasecki, I.V. Kityk, N. Veeraiah, J. Non-Cryst Solids. 358(23), 3175–3186 (2012)

    Article  Google Scholar 

  42. R.F. Loane, P.R. Xu, J. Silcox, Acta Crystallogr. A 47(3), 267–278 (1991)

    Article  Google Scholar 

  43. S.R. Elliott, Adv. Phys. 36(2), 135–217 (1987)

    Article  CAS  Google Scholar 

  44. M. Shoab, Z. Aslam, J. Ali, M. Zulfequar, J. Mater. Sci. Mater. Electron. 34(7), 681 (2023)

    Article  CAS  Google Scholar 

  45. S.I. Qashou, Z. Khattari, M. Rashad, A.A.A. Darwish, A. Shaheen, Mater. Res. Express. 6(8), 086317 (2019)

    Article  CAS  Google Scholar 

  46. F. Baig, M.W. Ashraf, A. Asif, M. Imran, Optik. 208, 164534 (2020)

    Article  CAS  Google Scholar 

  47. J. Jose, M. Abdul Khadar, Mater. Sci. Eng. A 304, 810–813 (2001)

    Article  Google Scholar 

  48. S. Patel, R. Kumar, J. Alloys Compd. 789, 6–14 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number :IFP22UQU4250045DSR055.

Funding

The work is funded by the Deanship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number: IFP22UQU4250045DSR055.

Author information

Authors and Affiliations

Authors

Contributions

A.H. formal analysis; validity, funding. A.M.M revised and edited the manuscript. A.S. Data curation; formal analysis; investigation, writing the original draft. A.M.A Data curation; methodology; writing the original draft. All authors have read and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to A. M. Mebed or Alaa M. Abd-Elnaiem.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakamy, A., Mebed, A.M., Sedky, A. et al. Effect of annealing temperature on the structure and dielectric characterization of ITO thin films on a boro-float substrate prepared by radio frequency sputtering. J Electroceram (2024). https://doi.org/10.1007/s10832-024-00348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10832-024-00348-y

Keywords

Navigation