Skip to main content
Log in

On the dielectric behaviors of Zn1−xyFexMyO ceramics for nonlinear optical and solar cell devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ac dielectric measurements of Zn1−xyFexMyO samples with different M, x and y were made against frequency (f) up to 10 MHz. It is found that addition of Cu beside Fe in ZnO decreased the porosity and average size of grains, whereas they are increased by addition of Ni in place of Cu. The real and imaginary parts of dielectric constant (ε′, ε″) and dielectric loss (tanδ) are generally decreased by Fe, followed by an increase/decrease for (Fe + Ni)/(Fe + Cu) samples. Furthermore, the conduction is electronic below 10 kHz for all samples, but it is changed to hole as f increases above 10 kHz. Generally, the binding energy Wm, minimum hopping distance (Rmin) and density of states at Fermi level N(EF) are slightly increased by Fe, followed by a decrease for the co-doped samples. Interestingly, the N(Ef) of the Zn0.9Fe.1O (S2) sample is sharply increased with f, goes to optimum at 28.7 Hz and then decreases. In addition, the F-factor, for solar cell design, was increased by increasing f, and it has the samples order of (Fe), (Fe + Ni), (Zn) and (Fe + Cu). A single semicircle could be obtained from the Cole–Cole plot and the impedance of grain Z\(G) and that of grain boundaries Z\(GB) are increased by Fe, followed by an increase/decrease for (Fe + Cu)/(Fe + Ni) samples. The radius of arc increases for Fe and (Fe + Cu) samples, revealing a decrease in capacitance, while vice versa for (Fe + Ni) samples. The arcs seem to be centered below the Z\ axis, indicating non-Debye relaxation of dipoles. These outcomes indicate that Fe and (Fe + Ni) samples shift the ZnO dielectric medium to higher values, and it is strongly recommended with Fe sample for solar cell design. In contrast, the (Fe + Cu) samples are recommended for high-frequency nonlinear optical devices due to their poor dielectric medium. To the best of our knowledge, the present systematic investigation may not be reported elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.S. Aanand, J. Alloy. Comp. 723, 1155–1161 (2017)

    Article  Google Scholar 

  2. C. Ragupathi, J.J. Vijaya, A. Manikandan, L.J. Kennedy, J. Nanosci. Nanotechnol. 13, 8298–8306 (2013)

    Article  Google Scholar 

  3. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, J. Supercond. Nov. Magn 29, 2141–2149 (2016)

    Article  Google Scholar 

  4. H.M. Ali, A.M.A. Hakeem, Eur. Phys. J. Appl. Phys. 72, 10301 (2015)

    Article  Google Scholar 

  5. A.A. Othman, M.A. Othman, E.M.M. Ibrahim, M.A. Ali, Ceram. Int. 43, 527 (2017)

    Article  Google Scholar 

  6. A. Sedky, Atif Mossad Ali, Mansour Mohamed, Opt. Quantum Electron. 52,42, 1 (2020).

  7. L. Arda, O. Ozturk, E. Asikuzun, S.P. Ataoglu, Tech. 235, 479–484 (2013)

    Google Scholar 

  8. M. Ram, K. Bala, H. Sharma, N.S. Negi (2016) AIP Conf. 1731, 050104

  9. Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, PAC. 10, 125–135 (2016)

    Article  Google Scholar 

  10. C.K. Ghosh, S. Malkhand, M.K. Mitra, K.K. Chattopadhyay, J. Phys. D: App. Phys. 41, 245113 (2008)

    Article  ADS  Google Scholar 

  11. M. Andres Verges, A.R. West, J. Electroceram. 1, 125 (1997)

  12. - Shukla R K, Srivastava A, Dubey K C and Kumar N 2009 Int. Conf. on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO’09) pp 465–466

  13. J. Jose, A. Khadar, Nanostruct. Mater. 11(8), 1091 (1999)

    Article  Google Scholar 

  14. J. Jose, A. Khadar, Mater. Sci. Eng. A 304, 810 (2001)

    Article  Google Scholar 

  15. J.R. Macdonald, Impedance spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992)

    Article  Google Scholar 

  16. P. Knauth, J. Schoonman, “Defect and transport properties of nanocrystalline ceramics and thin films.” Electron. Mater.: Sci Technol. 7, 111–131 (2002)

    Google Scholar 

  17. R. Tripathi, A. Kumar, C. Bharti, T.P. Sinha, Dielectric relaxation of ZnO nanostructures synthesized by soft chemical method. Curr. Appl. Phys. 10, 676–681 (2010)

    Article  ADS  Google Scholar 

  18. D. Fernandez-Hevia, M. Peiteado, J. de Frutos, A.C. Caballero, J.F. Fernandez, Wide range dielectric spectroscopy of ZnO based varistors as a function of sintering time. J. Eur. Ceram. Soc. 24, 1205–1208 (2004)

    Article  Google Scholar 

  19. T.A. Baeraky, Microwave measurements of dielectric properties of zinc oxide at high temperature. Egypt. J. Solids 30, 13–18 (2007)

    Article  Google Scholar 

  20. M. Ram, A.c. conductivity and relaxation in LiCoVO4 ceramics. Curr. Appl. Phys. 10, 1013–1016 (2010)

    Article  ADS  Google Scholar 

  21. P. Sahay, S. Tewari, R. Nath, S. Jha, M. Shamsuddin, Studies on ac response of zinc oxide pellets. J. Mater. Sci. 43(13), 4534–4540 (2008)

    Article  ADS  Google Scholar 

  22. J. Jose, M. Abdul Khadar, Role of grain boundaries on the electrical conductivity of nanophase zinc oxide. Mater. Sci. Eng. A 304, 810–813 (2001)

    Article  Google Scholar 

  23. C. Panatarani, I.W. Lenggoro, K. Okuyama, The crystallinity and the photoluminescent properties of spray pyrolyzed ZnO phosphor containing Eu2+ and Eu3+ ions. J. Phys. Chem. Solids 65, 1843–1847 (2004)

    Article  ADS  Google Scholar 

  24. Y.S. Wang, P.J. Thomas, P. O’Brien, Nanocrystalline ZnO with ultraviolet luminescence. J. Phys. Chem. B 110, 4099–4104 (2006)

    Article  Google Scholar 

  25. A. Sajid Ali, N. Ambreen, F. Bushara, W. Khan, A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater. Sci. Eng. B 177, 428–435 (2012)

    Article  Google Scholar 

  26. S. Singh, P. Dey, J.N. Roy, S.K. Mandal, Tunable dielectric constant with transition metal doping in Zn1-x(MnTM)xO (TM 1⁄4 Co, Fe) nanocrystals. J. Alloys Compd. 642, 15–21 (2015)

    Article  Google Scholar 

  27. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40, 1635–1639 (2013)

    Article  Google Scholar 

  28. K. Irshad, M.T. Khan, A. Murtaza, Synthesis and characterization of transition- metals-doped ZnO nanoparticles by sol-gel auto-combustion method. Phys. B Condens. Matter 543, 1–6 (2018)

    Article  ADS  Google Scholar 

  29. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Phys. B Condens. Matter 537, 167–175 (2018)

    Article  ADS  Google Scholar 

  30. R. Joshi, P. Kumar, A. Gaur, K. Asokan, Structural, optical and ferroelectric properties of V doped ZnO. Appl. Nanosci. 4, 531–536 (2014)

    Article  ADS  Google Scholar 

  31. J. Singh, R.C. Singh, Structural, optical, dielectric and transport properties of ball mill synthesized ZnO–V2O5 nano-composites. J. Mol. Struct. 1215, 128261 (2020)

    Article  Google Scholar 

  32. S. Das, S. Sutradhar, Enhanced dielectric behavior and ac electrical response in Gd–Mn–ZnO nanoparticles. Alloys Comp. 726, 11–21 (2017)

    Article  Google Scholar 

  33. H. Saadi, F.I.H. Rhouma, Z. Benzarti, Z. Bougrioua, S. Guermazi, K. Khirouni, Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 129, 110884 (2020)

    Article  Google Scholar 

  34. C. Belkhaoui, N. Mzabi, H. Smaoui, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results in Physics 12, 1686–1696 (2019)

    Article  ADS  Google Scholar 

  35. C.B.S. Valentin, R.L.S. Silva, P. Banerjee, A. Franco Jr., Investigation of Fe-doped room temperature dilute magnetic ZnO semiconductors. Mater. Sci. Semicond. Process. 96, 122–126 (2019)

    Article  Google Scholar 

  36. J. Singh, S. Virpal, R.C.S. Sharma, Effect of Fe2O3 doping on structural properties of ZnO-V2O5 based varistor system. AIP Conf. Proc. 1832, 120021 (2017)

    Article  Google Scholar 

  37. I.N. Reddy, C.V. Reddy, M. Sreedhar, J. Shim, M. Cho, D. Kim, Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Mater. Sci. Eng. B 240, 33–40 (2019)

    Article  Google Scholar 

  38. Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method. Process. Appl. Ceram. 10, 125 (2016)

    Article  Google Scholar 

  39. C.K. Ghosh, S. Malkhandi, M.K. Mitra, K.K. Chattopadhyay, Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. J. Phys. D: Appl. Phys. 41, 245113 (2008)

    Article  ADS  Google Scholar 

  40. M. Ram, K. Bala, H. Sharma, N.S. Negi, Effect of Co doping on the structural and dielectric properties of ZnO nanoparticles. AIP Conf. Proc. 1731, 050104 (2016)

    Article  Google Scholar 

  41. G. El Hallani, S. Nasih, N. Fazouan, A. Liba, M. Khuili, M. Sajieddine et al., Comparative study for highly Al and Mg doped ZnO thin films elaborated by sol gel method for photovoltaic application. J. Appl. Phys. 121, 1351031–1351037 (2017)

    Article  Google Scholar 

  42. S. Zainab, S. Atiq, A. Mahmood, S.M. Ramay, S. Riaz, S. Naseem, Thermal tuning of electrical and dielectric characteristics of Mn-doped Zn0.95Fe0.05O dilute magnetic semiconductors. J. Mater. Sci. Mater. Electron. 29, 3943–3951 (2018)

    Article  Google Scholar 

  43. M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Structural and frequency dependent dielectric properties of Fe3þ doped ZnO. Mater. Res. Bull. 47, 3952–3958 (2012)

    Article  Google Scholar 

  44. J. Singh, R.C. Singh, Tuning of structural, optical, dielectric and transport properties of Fe-doped ZnO: V system. Mater. Sci. Semicond. Process. 121, 105305 (2021)

    Article  Google Scholar 

  45. N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results in Physics 12, 1686 (2019)

    Article  ADS  Google Scholar 

  46. - Abdullah F Al-Naim, A. Sedky,N. Afify, and S.S. Ibrahim, Under press, Applied Physics A (2021).

  47. A.F. Al-Naim, N. Afify, A. Sedkyand, S.S. Ibrahim, Appl. Phys. A 127, 486 (2021)

    Article  Google Scholar 

  48. F. Kremer, A. Schonhals, Broadband Dielectric Spectroscopy, vol. 35 (Springer, Heidelberg, 2003)

    Book  Google Scholar 

  49. K.S. Shankar, S. Kar, G.N. Subbanna, A.K. Raychaudhuri, Sol. State. Comm. 129, 479 (2004)

    Article  ADS  Google Scholar 

  50. Ü. Özgür, A. Ya, I. Alivov, C. Liu, A. Teke, A. ReshchikovM, S. Doğan, V. AvrutinC, S.J. Cho, H. Morkoçd, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  51. A. Sedky, S.B. Mohamed, Mater. Sci.-Pol. 32(1), 16 (2014)

    Article  ADS  Google Scholar 

  52. - S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Chem. Eng. Civ. Eng. Mech. Eng. 227, (2010).

  53. U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, Mater. Sci. Appl. 2, 1302 (2011)

    Google Scholar 

  54. F.K. Shan, Z.F. Liu, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, J. Electroceram. 13, 195 (2004)

    Article  Google Scholar 

  55. G.B. Parravicini, E.R. Mognaschi, D. Comoretto, G. Dellepiane, A. Brillante, Syn Metals 101, 467 (1999)

    Article  Google Scholar 

  56. S. Selvakumar, R. Murugaraj, E. Viswanathan, S. Sankar, K. Sivaji, J. Mol. Struct. 1056–1057, 152 (2014)

    Article  ADS  Google Scholar 

  57. A.A. Attia, H.S. Soliman, M.M. Saadeldin, K. Sawaby, Synth. Met. 205, 139 (2015)

    Article  Google Scholar 

  58. M. Pollak, T.H. Geballe, Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122(6), 1742–1753 (1961)

    Article  ADS  Google Scholar 

  59. M.M. El-Nahass, A.A. Atta, M.A. Kamel, S.Y. Huthaily, AC conductivity and dielectric characterization of synthesized p-N, Ndimethylaminobenzylidenemalononitrile (DBM) organic dye. Vacuum 91, 14–19 (2013)

    Article  ADS  Google Scholar 

  60. H. Bouaamlat, N. Hadi, N. Belghiti, H. Sadki, M.N. Bennani, F. Abdi, T.-d Lamcharfi, M. Bouachrine, M. Abarkan, Adv. Mater. Sci. Eng. 2020, 8 (2020)

    Article  Google Scholar 

  61. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121–124 (1951)

    Article  ADS  Google Scholar 

  62. K.W. Wagner, Zurtheorie der unvollkommenendielektrika. Ann. Phys. 345(5), 817–855 (1913)

    Article  Google Scholar 

  63. A. Samanta, M.N. Goswami, P.K. Mahapatra, Fe-doped ZnO nanoparticles as novel photonic and multiferroic semiconductor. Mater. Chem. Phys. 240, 122180 (2020)

    Article  Google Scholar 

  64. F. Kröger, H. Vink, Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307–435 (1956)

    Article  Google Scholar 

  65. H.M. Zeyada, F.M. El-Taweel, M.M. El-Nahass, M.M. ElShabaan, Chin. Phys. B 25, 077701 (2016)

    Article  ADS  Google Scholar 

  66. M. Pollak, T.H. Geballe, Phys. Rev. 122(6), 1742 (1961)

    Article  ADS  Google Scholar 

  67. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  68. H. Böttger, U.V. Bryskin, Hoping Conduction in Solids, VerlagAkademie, Berlin, Vol. 41, (1985) pp. 169–213

  69. A.R. Long, Adv. Phys. 31(5), 553 (1982)

    Article  ADS  Google Scholar 

  70. R.F. Loane, P. Xu, J. Silcox, Acta Crystallogr. Sect. A Found. Crystallogr. 47, 267 (1991)

    Article  Google Scholar 

  71. S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  72. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-cryst. Solids 45, 57 (1981)

    Article  ADS  Google Scholar 

  73. NCh. Ramesh Babu, M.A. Valente, N. NarasimhaRao, M.P.F. Graça, G. Naga Raju, M. Piasecki, I.V. Kityk, N. Veeraiah, Low temperature dielectric dispersion and electrical conductivity studies on Fe2O3 mixed lithium yttrium silicate glasses. J. Non-Cryst. Solids 358, 3175–3186 (2012)

    Article  ADS  Google Scholar 

  74. Z.M.E. Fahim, S.M. Bouzzine, Y. AitAicha, M. Bouachrine, M. Hamidi, Res. Chem. Intermed. 44(3), 2009 (2018)

    Article  Google Scholar 

  75. A. Oueslati, F. Hlel, K. Guidara, M. Gargouri, J. Alloy. Compd. 492(1–2), 508 (2010)

    Article  Google Scholar 

  76. F. Yakuphanoglu, Electrical conductivity and electrical modulus properties of α, ω-dihexylsexithiophene organic semiconductor. Physica B 393(1–2), 139–142 (2007)

    Article  ADS  Google Scholar 

  77. S.I. Qashou, A.A.A. Darwish, M. Rashad, Z. Khattari, AC electrical conductivity and dielectric relaxation studies on n-type organic thin films of N, N′-Dimethyl-3,4,9,10- perylenedicarboximide (DMPDC). Physica B 525, 159–163 (2017)

    Article  ADS  Google Scholar 

  78. A. Azam, A.S. Ahmed, M.S. Ansari, M.M. Shafeeq, A.H. Naqvi, Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. J Alloys Compd 506, 237–242 (2010)

    Article  Google Scholar 

  79. T. Elkar, N. Mzabi, M. Ben Hassine, P. Gemeiner, B. Dkhil, S. Guermazi, H. Guermazi, Structural and optical investigation of (V, Al) doped and co-doped ZnOnanopowders: tailored visible luminescence for white light emitting diodes. Superlattice. Microst. 122, 349–361 (2018)

    Article  ADS  Google Scholar 

  80. J. Singh, R.C. Singh, J. Mol. Struct. 1215, 128261 (2020)

    Article  Google Scholar 

  81. J. Jose, A. Khadar, Acta Mater. 49, 729 (2001)

    Article  ADS  Google Scholar 

  82. W.C. Nan, A. Tschope, S. Holten, H. Kliem, R. Birringer, J. Appl. Phys. 85(11), 7735 (1999)

    Article  ADS  Google Scholar 

  83. Z. Brankoviz, G. Brankoviz, D. Poleti, A.J. Varela, Ceram. Int. 27(1), 115 (2001)

    Article  Google Scholar 

  84. E.B. Glot, E. Traversa, Eur. Ceram. Soc. 19, 715 (1999)

    Article  Google Scholar 

  85. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, K. Morita, J. Eur. Ceram. Soc. 24, 139 (2004)

    Article  Google Scholar 

  86. J. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 20, 2753 (2000)

    Article  Google Scholar 

  87. J. Han, A.M.R. Senos, P.Q. Mantas, Mater. Chem. Phys. 75, 117 (2002)

    Article  Google Scholar 

  88. L. Gao, Q. Li, W. Luan, J. Am. Ceram. Soc. 85(4), 1016 (2002)

    Article  Google Scholar 

  89. A. Sedky, M.I. Youssif, T.A. El-Brolossy, Nat. Sci. 14(2), 66–73 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.1/298/42. They are also thanking Dr/Gamal Turk, National Physical Center (Cairo, Egypt) for his cooperation during the samples dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sedky or N. Afify.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedky, A., Afify, N., Ali, A.M. et al. On the dielectric behaviors of Zn1−xyFexMyO ceramics for nonlinear optical and solar cell devices. Appl. Phys. A 128, 102 (2022). https://doi.org/10.1007/s00339-022-05260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05260-2

Keywords

Navigation