Skip to main content
Log in

Effect of annealing time on the structural, optical and electrical characteristics of DC sputtered ITO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using an Indium tin oxide (ITO) ceramic target (In2O3:SnO2, 90:10 wt%), ITO thin films were deposited by conventional direct current magnetron sputtering technique onto glass substrates at room temperature. The obtained ITO films were annealed at 400 °C for different annealing times (1, 2, 5, 7, and 9 h). The effect of annealing time on their structural, optical and electrical properties was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microcopy (AFM), ultra violet–visible (UV–Vis) spectrometer, and temperature dependence Hall measurements. XRD data of obtained ITO films reveal that the films were polycrystalline with cubic structure and exhibit (222), (400) and (440) crystallographic planes of In2O3. AFM and Scanning Electron Microscopy SEM have been used to probe the surface roughness and the morphology of the films. The refractive index (n), thickness and porosity (%) of the films were evaluated from transmittance spectra obtained in the range 350–700 nm by UV–Vis. The optical band gap of ITO film was found to be varying from 3.35 to 3.47 eV with the annealing time. The annealing time dependence of resistivity, carrier concentration, carrier mobility, sheet resistance, and figure of merit values of the films at room temperature were discussed. The carrier concentration of the films increased from 1.21 × 1020 to 1.90 × 1020 cm−3, the Hall mobility increased from 11.38 to 18 cm2 V−1 s−1 and electrical resistivity decreased from 3.97 × 10−3 to 2.13 × 10−3 Ω cm with the increase of annealing time from 1 to 9 h. Additionally, the temperature dependence of the carrier concentration, and carrier mobility for the as-deposited and 400 °C annealed ITO films for 2 and 9 h were analysed in the temperature range of 80–350 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2139 (1998)

    Article  Google Scholar 

  2. K.L. Chopra, S. Mayor, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  Google Scholar 

  3. T. Minami, Thin Solid Films 516, 5822 (2008)

    Article  Google Scholar 

  4. H. Kim, A. Dique, J.S. Horwitz, D.B. Chrisey, Appl. Phys. Lett. 74, 3444 (1999)

    Article  Google Scholar 

  5. H. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, H. Morkoç, Superlattices Microstruct. 48, 458 (2010)

    Article  Google Scholar 

  6. S. Major, K.L. Chopra, Sol. Energy Mater. 17, 319 (1988)

    Article  Google Scholar 

  7. Y. Djaoued, V.H. Phong, S. Badilescu, P.V. Ashrit, F.E. Girouard, V.V. Truong, Thin Solid Films 293, 108 (1997)

    Article  Google Scholar 

  8. J. Vetrone, Y.W. Chung, J. Vac. Sci. Technol. A9, 3041 (1991)

    Article  Google Scholar 

  9. F. Zhu, C.H.A. Huan, K. Zhang, A.T.S. Wee, Thin Solid Films 359, 244 (2000)

    Article  Google Scholar 

  10. M. Quaas, C. Eggs, M.L. Ma, H. Wulff, Thin Solid Films 322, 277 (1998)

    Article  Google Scholar 

  11. J.P. Zheng, H.S. Kwok, Appl. Phys. Lett. 63, 1 (1993)

    Article  Google Scholar 

  12. S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 54, 3497 (1983)

    Article  Google Scholar 

  13. Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, Vacuum 75, 183 (2004)

    Article  Google Scholar 

  14. M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, M. Oz, J. Matter. Sci Mater. Electron. 24, 467 (2013)

    Article  Google Scholar 

  15. N. Nadaud, N. Lequeux et al., J. Solid State Chem. 135, 140 (1998)

    Article  Google Scholar 

  16. R. Jenkins, J.L. deVries, Worked Examples in X-ray Analysis, 2nd ed. edn. (Philips Technical Library, Macmillan, 1978)

    Google Scholar 

  17. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9, 1002 (1976)

    Article  Google Scholar 

  18. H.N. Cui, V. Teixeria, A. Monteria, Vacuum 67, 589 (2002)

    Article  Google Scholar 

  19. B.E. Yoldas, P.W. Partlow, Thin Solid Films 129, 1 (1985)

    Article  Google Scholar 

  20. W.W. Mobzen, J. Vac. Sci. Technol. 12, 99 (1975)

    Article  Google Scholar 

  21. V. Malathy, S. Sivaranjani, V.S. Vidhya, T. Balasubramanian, J. Joseph Prince, C. Sanjeeviraja, M. Jayachandran, J. Mater. Sci. Mater. Electron 21, 1299 (2010)

    Article  Google Scholar 

  22. A.N.H. Al-Ajit, S.C. Bayliss, Thin Solid Films 305, 116 (1997)

    Article  Google Scholar 

  23. C.H. Lee, C.S. Huang, Mater. Sci. Eng. B 22, 223 (1994)

    Article  Google Scholar 

  24. J.I. Parkove, Optical Process in Semiconductors (Dover Publications Inc., New York, 1971)

    Google Scholar 

  25. W.F. Wu, B.S. Shiou, S.T. Hsich, Semi Conduct. Sci. Technol 9, 1242 (1994)

    Article  Google Scholar 

  26. C.H.L. Weijtens, P.A.C. Vanloon, Thin Solid Films 196, 1 (1991)

    Article  Google Scholar 

  27. C.G. Granqvist, A. Hultaker, Thin Solid Films 411, 1 (2002)

    Article  Google Scholar 

  28. L. Meng, M.P. Dos Santos, Thin Solid Films 322, 56 (1998)

    Article  Google Scholar 

  29. S. Noguchi, H. Sakata, J. Phys. D Appl. Phys. 13, 1129 (1980)

    Article  Google Scholar 

  30. B. Radha Krishna, T.K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna, Opt. Mater. 15, 217 (2000)

    Article  Google Scholar 

  31. J. Joseph Prince, S. Ramamurthy, B. Subramanian, C. Sanjeeviraja, M. Jayachandran, J. Cryst. Growth 240, 142 (2002)

    Article  Google Scholar 

  32. A.V. Moholkar, S.M. Pawar et al., JTTEE5 19, 531 (2010)

    Google Scholar 

  33. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  34. L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1958)

    Google Scholar 

  35. G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977)

    Article  Google Scholar 

  36. O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, J. Phys. D Appl. Phys. 43, 055402 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

A.S. would like to thank Abant Izzet Baysal University Department of Physics where this study was carried out, for their hospitality. Authors would like to thank A. Varilci and C. Terzioglu for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Senol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, S.D., Senol, A., Ozturk, O. et al. Effect of annealing time on the structural, optical and electrical characteristics of DC sputtered ITO thin films. J Mater Sci: Mater Electron 25, 4992–4999 (2014). https://doi.org/10.1007/s10854-014-2262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2262-y

Keywords

Navigation