Skip to main content
Log in

I nvestigation of electrical conductivity (AC/DC) and dielectric properties of Se 80 Te 15x Cd 5 Bi x ( x  = 0, 5, 10) quaternary chalcogenide glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports the studies of AC and DC conduction in bismuth doped quaternary chalcogenide glass Se80Te15−xCd5Bix (x = 0, 5, 10). Dependence of AC conductivity (σac), dielectric constant (ϵ′) and dielectric loss (ϵ″) of glasses prepared by melt quenching technique was investigated for 100 kHz–1 MHz frequency range and 294–351 K temperature range. An increment in the values of DC and AC conductivities was observed with the addition of bismuth. Dielectric parameters were found to increase with the increase in temperature however a Decrease in the values of ϵ′ and ϵ″ was observed with the increase in frequency. Temperature dependence of σdc portrayed non-linear nature and was studied for the lower (294–317 K) and intermediate (317–351 K) temperature ranges. Values of hopping distance (Rhop) and hopping energy (Whop) suggested the use of Mott’s model to interpret the σdc data for lower temperature range. DC conduction in intermediate temperature range was interpreted by Greave’s model. The density of localised states [N(EF)] was estimated using σac and σdc data for the prepared glasses and has been found to be dependent on extent of bismuth doping. In last, an attempt to correlate the structural and phase change properties of the sample on the basis of electrical measurements were made and it was found that bismuth incorporation in chalcogenide glasses tunes the material for application in phase change memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Zheng, J. Yao, G. Yang, Self-assembly of the lateral In2Se3/CuInSe2 heterojunction for enhanced photodetection. ACS Appl. Mater. Interfaces 9(8), 7288–7296 (2017)

    Article  CAS  Google Scholar 

  2. J.O. Island, S.I. Blanter, M. Buscema, H.S. van der Zant, A. Castellanos-Gomez, Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 15(12), 7853–7858 (2015)

    Article  CAS  Google Scholar 

  3. W. Feng, W. Zheng, X. Chen, G. Liu, W. Cao, P. Hu, Solid-state reaction synthesis of a InSe/CuInSe2 lateral p–n heterojunction and application in high performance optoelectronic devices. Chem. Mater. 27(3), 983–989 (2015)

    Article  CAS  Google Scholar 

  4. H. Lee, Y.K. Kim, D. Kim, D.H. Kang, Switching behavior of indium selenide-based phase-change memory cell. IEEE Trans. Magn. 41(2), 1034–1036 (2005)

    Article  CAS  Google Scholar 

  5. A.N. Politano, D. Campi, M. Cattelan, I. Ben Amara, S. Jaziri, A. Mazzotti, A. Barinov et al., Indium selenide: an insight into electronic band structure and surface excitations. Sci. Rep. 7(1), 1–11 (2017)

    Article  CAS  Google Scholar 

  6. B.J. Simonds, H.J. Meadows, S. Misra, C. Ferekides, P.J. Dale, M.A. Scarpulla, Laser processing for thin films chalcogenide photovoltaics: a review and prospectus. J. Photon. Energy 5, 050999 (2015)

    Article  CAS  Google Scholar 

  7. C. Duan, W. Luo, T. Jiu, J. Li, Y. Wang, Lu. Fushen, Facile preparation and characterization of ZnCdS nanocrystals for interfacial applications in photovoltaic devices. J. Colloid Interface Sci. 512, 353–360 (2018)

    Article  CAS  Google Scholar 

  8. N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A.L. Lacaita, D. Ielmini, Bipolar switching in chalcogenide phase change memory. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

  9. J. Vazquez, D. Garcia, G. Barreda, P.L. Lopez-Alemany, P. Villares, R. Jimenez-Garay, Crystallization of Ge0.08Sb0.15Se0.77 glass studied by DSC. J. Non-Cryst. Solids 345, 142–147 (2004)

    Article  Google Scholar 

  10. G. Singh, J. Sharma, A. Thakur, N. Goyal, G.S.S. Saini, S.K. Tripathi, Effect of bismuth on the electrical properties of a-Ge20Se80 glasses. J. Optoelectron. Adv. Mater. 7(4), 2069–2076 (2005)

    CAS  Google Scholar 

  11. K. Kumar, S.C. Katyal, P. Sharma, N. Thakur, Effect of Bi addition on dc, ac conductivity and dielectric properties of Te15(Se100-xBix)85 glassy alloys. J. Optoelectron. Adv. Mater. 13(3), 371 (2011)

    CAS  Google Scholar 

  12. M.M. Hafiz, A.A. Othman, M.M. Elnahass, A.T. Al-Motasem, Composition and electric field effects on the transport properties of Bi doped chalcogenide glasses thin films. Physica B 390, 286–292 (2007)

    Article  CAS  Google Scholar 

  13. S.A. Fayek, S.M. El Sayed, Effect of composition and forming parameters on CdSeTe films deposited at room temperature. J. Phys. Chem. Solids 63, 1–8 (2002)

    Article  CAS  Google Scholar 

  14. N. Tohge, T. Minami, M. Tanaka, Electrical transport in n-type semiconducting Ge120BixSe70−xTe10 glasses. J. Non-Cryst. Solids 37, 23–30 (1980)

    Article  CAS  Google Scholar 

  15. N. Tohge, T. Minami, Y. Yamamoto, M. Tanaka, Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se. J. Appl. Phys. 51, 1048–1053 (1980)

    Article  CAS  Google Scholar 

  16. K.O. Čajko, D.L. Sekulić, D.M. Petrović, V. Labaš, S. Minárik, S.J. Rakić, S.R. Lukić-Petrović, Study of electrical and microstructural properties of Ag-doped As-S-Se chalcogenide glasses. J. Non-Cryst. Solids 571, 121056 (2021)

    Article  Google Scholar 

  17. P. Priyadarshini, S. Das, R. Naik, A review on metal-doped chalcogenide films and their effect on various optoelectronic properties for different applications. RSC Adv. 12(16), 9599–9620 (2022)

    Article  CAS  Google Scholar 

  18. S. Kang, Y. Fu, H. Gu, C. Lin, Chalcogenide glass for thermoelectric application. J. Non-Cryst. Solids 15, 100111 (2022)

    CAS  Google Scholar 

  19. N.F. Mott, electrons in disordered structures. Adv. Phys. 16(61), 49–144 (1967)

    Article  CAS  Google Scholar 

  20. M.H. Cohen, Review of the theory of amorphous semiconductors. J. Non-Solids 4(supplement C), 391–409 (1970)

    Article  CAS  Google Scholar 

  21. M. Shoab, R.S. Rahman, Z. Aslam, M. Zulfequar, Effect of bismuth incorporation on thermal properties of quaternary chalcogenide glass Se80Te15-xCd5Bix (x=0,5,10) alloys. Ceram. Int. 46, 24850–24859 (2020)

    Article  CAS  Google Scholar 

  22. M. Nardone, M. Simon, I.V. Karpov, V.G. Karpov, Electrical conduction in chalcogenide glasses of phase change memory. J. Appl. Phys. 112, 071101–0711020 (2012)

    Article  Google Scholar 

  23. N. Suri, K.S. Bindra, M. Ahmad, J. Kumar, R. Thangaraj, Optical and electrical studies of as-prepared and annealed Se-Te-Bi thin films. Appl. Phys. A 90, 149–151 (2008)

    Article  CAS  Google Scholar 

  24. T.M. Rajakumar, T. Bhuvaneshwarababu, R. Chandramani, Behavioural change in optical and electrical property of Cd chalcogenide films containing Te Se deposited by thermal and electron beam evaporation. Arch. Phys. Res. 2(1), 90–98 (2011)

    CAS  Google Scholar 

  25. K.M.F. Shahil, M.Z. Hossain, V. Goyal, A.A. Balandin, Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. J. Appl. Phys. 111, 054305 (2012)

    Article  Google Scholar 

  26. A. Soni, Yu. Zhao Yanyuan, M.K. Ligen, K. Aik, M.S. Dresselhaus, Q. Xiong, Enhanced thermoelectric properties of solution grown Bi2Te3−x sex nanoplatelet composites. Nano Lett. 12(3), 1203–1209 (2012)

    Article  CAS  Google Scholar 

  27. J. Rangel-Cárdenas, H. Sobral, Optical Absorption Enhancement in Cd-Te Thin Films by Micro structuration of the Silicon Substrate. Materials 10, 607 (2017)

    Article  Google Scholar 

  28. T.R. Yang et al., Far-IR reflectance spectra analysis of CdZnTe and related material. Proc. SPIE 7449, 1–5 (2009)

    Google Scholar 

  29. N. Spyros, Yannopoulos, structure and photo-induced effects in elemental chalcogens: a review on Raman scattering. J. Mater. Sci.: Mater. Electron. 31, 7565–7595 (2020)

    Google Scholar 

  30. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  31. H. Singh-Deepika, K.S. Rathore, N.S. Saxena, Study of the electrical and optical properties of GeSePb chalcogenide glass. J. Asian Ceram. Soc. 6, 30–36 (2018)

    Article  Google Scholar 

  32. N.F. Mott, conduction in non crystalline materials. Philos. Mag. 19, 835–852 (1969)

    Article  CAS  Google Scholar 

  33. G.N. Greaves, Small polaron conduction in V2O5P2O5. J. Non-Cryst. Solids 11, 427–446 (1973)

    Article  CAS  Google Scholar 

  34. L. Pauling, Die Natur der Chemischen Binding (VCH Weinheim, Weinheim, 1976)

    Google Scholar 

  35. K. Kumar, S.C. Katyal, P. Sharma, N. Thakur, Effect of Bi addition on dc, ac conductivity and dielectric properties of Te15(Se100-xBix)85 glassy alloy. J. Optoelectron. Adv. Mater. 13(4), 371–376 (2011)

    CAS  Google Scholar 

  36. A.A. Yadav, E.U. Masumdar, Optical and electrical transport properties of spray deposited CdS1−xSex thin films. J. Jailcom 505(2), 787–792 (2010)

    CAS  Google Scholar 

  37. E.J. Grant, E.A. Davis, Hopping conduction in amorphous semiconductors. Solid State Commun. 15, 563–566 (1974)

    Article  CAS  Google Scholar 

  38. S.A. Fayek, M.H. El-Fouly, H.H. Amer, A.H. Amar, M.M. El-Ocker, Electrical conductivity of amorphous semiconducting films of system (Ge20As30Se50−xTex). Solid State Commun. 93(3), 213–217 (1995)

    Article  CAS  Google Scholar 

  39. H. Fritzsche, M. Kastner, The effect of charged additives on the carrier concentrations in lone-pair semiconductors. Philos. Mag. B 37, 285–292 (1978)

    Article  CAS  Google Scholar 

  40. M.D. Sharma, N. Goyal, Applications of advanced electronic materials: InSe system (In10Se90)100–xPbx with x = 0, 2, 5, 10 for PCRAM applications. J. Ovon. Res. 14(1), 145–154 (2018)

    CAS  Google Scholar 

  41. M.N. Amroun, M. Khadraoui, AC conductivity and dielectric studies of Cd0.8Sn0.2S thin films. Int. J. Numer. Model. 32, e2617 (2019)

    Article  Google Scholar 

  42. N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, ac conductivity and dielectric properties of amorphous Se80Te20-xGex chalcogenide glass film compositions. J. Alloys Compds. 477(1–2), 925–930 (2009)

    Article  CAS  Google Scholar 

  43. P.N. Musfir, S. Mathew, V.P.N. Nampoori, S. Thomas, Investigations on frequency and temperature dependence of AC conductivity and dielectric parameters in Ge20Ga5Sb10S65 quaternary chalcogenide glass. Optik (Stuttg) 182, 1244–1251 (2019)

    Article  CAS  Google Scholar 

  44. M.D. Sharma, Chalcogenide glasses as smart material in electronic applications, in 7th International Conference on Signal Processing and Integrated Networks (SPIN) (IEEE, 2020)

  45. K.O. Cajko, D.L. Sekulic, S. Lukic-Petrovic, M.V. Siljegovic, D.M. Petrovic, Impedance response and I-V characteristics of Bi6(As2S3)94 and Bi7(As2S3)93 at elevated temperature. J. Mater. Sci. Mater. Electron. 31, 14730–14736 (2020)

    Article  Google Scholar 

  46. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, Temperature dependence of dielectric losses in chalcogenide glasses. J. Non-Cryst. Solids 45(1), 57–62 (1981)

    Article  CAS  Google Scholar 

  47. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  48. S.R. Elliott, Temperature dependence of ac conductivity of chalcogenide glasses. Philos. Mag. B 37(5), 553–560 (1978)

    Article  CAS  Google Scholar 

  49. N. Shukla, H.P. Pathak, V. Rao, D.K. Dwivedi, AC conductivity and dielectric properties of Se90Cd6Sb4 glassy alloy. Chalcogenide Lett. 13(4), 178–184 (2016)

    Google Scholar 

  50. S.R. Elliott, AC conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–218 (1987)

    Article  CAS  Google Scholar 

  51. S.R. Ovshinsky, Reversible electrical switching phenomena in disorder structures. Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  52. I.G. Austin, N.F. Mott, Polarons in crystalline and non crystalline materials. Adv. Phys. 18(71), 41–102 (1969)

    Article  CAS  Google Scholar 

  53. R. Bez, A. Pirovano, Non-volatile memory technologies: emerging concepts and new materials. Mater. Sci. Semicond. Process. 7, 349–355 (2004)

    Article  CAS  Google Scholar 

  54. A.L. Lacaita, Phase-change memories: state-of-the-art, challenges and perspectives. Solid State Electron. 50, 24–31 (2006)

    Article  CAS  Google Scholar 

  55. K.A. Campbell, C.M. Anderson, Phase-change memory devices with stacked Ge-chalcogenide / Sn-chalcogenide layers. Microelectron. J. 38, 52–59 (2007)

    Article  CAS  Google Scholar 

  56. J.T. Devaraju, S. Asokan, E.S.R. Gopal, Electrical switching in chalcogenide glasses: the current status. Front. Mater. Phys. 1, 135–174 (2002)

    Google Scholar 

  57. S. Asokan, K.P. Lakshmi, Electrical switching and other properties of chalcogenide glasses. J. Indian Inst. Sci. 91(2), 313–330 (2011)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MS, ZA, JA and MZ. The first draft of the manuscript was written by MS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Zulfequar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoab, M., Aslam, Z., Ali, J. et al. I nvestigation of electrical conductivity (AC/DC) and dielectric properties of Se 80 Te 15x Cd 5 Bi x ( x  = 0, 5, 10) quaternary chalcogenide glass . J Mater Sci: Mater Electron 34, 681 (2023). https://doi.org/10.1007/s10854-023-10052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10052-2

Navigation