Skip to main content
Log in

Preparation of LSGM electrolyte via fast combustion method and analysis of electrical properties for ReSOC.

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this work, we prepared La1 − xSrxGa1−yMgyO3 (LSGM) by the fast combustion method and assessed the electrical properties with respect to the composition and sintering temperature (1200, 1300, and 1400 °C by 6 h) as an electrolyte material for the reversible solid oxide cells (ReSOCs). For the preparation of samples, two different fuels, such as tartaric acid (TA) and citric acid (CA), with corresponding nitrate salts as precursors, were adopted for the fast combustion method (at 500 °C for 10 min). From the X-ray diffractograms, two main phases corresponding to LSGM orthorhombic (space group Imma) and LSGM-cubic (space group Pm-3 m) were identified. From the literature, both structures are reported as high oxygen ion conductive species, but normally they are not reported to appear together. Additionally, in some cases, an isolating (secondary) phase of LaSrGaO4 in a low concentration < 1.98% was observed. The scanning electron microscopy (SEM) studies on samples sintered at 1200 and 1300 °C revealed the smaller grain size and irregular morphology. The SEM micrographs depicted a well-defined superficial morphology with less porosity for the samples sintered at 1400 °C. For comparative analysis, the conductivity (S.cm− 1) was measured at varying temperatures (300–800 °C) for the samples sintered at 1300 and 1400 °C. Because of the large number of insulating phases produced by the incomplete sintering process, the samples sintered at 1300 °C had lower conductivities. A higher conductivity of 0.125 S.cm− 1 was observed for La0.80Sr0.20Ga0.80Mg0.20O3 (LSGM), which was obtained using the citric acid (sintered at 1400 °C), which is in the range of earlier reported similar studies. The observed variation in the conductivity with respect to different phases of LSGM, the influence of the secondary phase, and the wt% of the constituents of LSGM are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability statement

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. NOAA, Earth System Research Laboratory, (2021). https://www.Esrl.Noaa.Gov/Gmd/Ccgg/Trends/Weekly.Html

  2. A. Dicks, D. Rand, Fuel Cell Systems Explained, 2018

  3. L. Blum, R. Deja, R. Peters, D. Stolten, Comparison of efficiencies of low, mean and high temperature fuel cell Systems. Int. J. Hydrogen Energy 36, 11056–11067 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.122

    Article  CAS  Google Scholar 

  4. T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 Perovskite Type Oxide (as a New Oxide Ionic Conductor, 1994)

  5. P.S. Cho, S.Y. Park, Y.H. Cho, S.J. Kim, Y.C. Kang, T. Mori, J.H. Lee, Preparation of LSGM powders for low temperature sintering. Solid State Ionics. 180, 788–791 (2009). https://doi.org/10.1016/j.ssi.2008.12.040

    Article  CAS  Google Scholar 

  6. T. Ishihara, Perovskite oxide for solid oxide fuel cells (Springer, 2009)

  7. T. Ishihara, Development of new fast oxide ion conductor and application for intermediate temperature Solid Oxide Fuel Cells. Bull. Chem. Soc. Jpn 79, 1155–1166 (2006). https://doi.org/10.1246/bcsj.79.1155

    Article  CAS  Google Scholar 

  8. R. Singh, R.K. Singh, Electrical properties of Ba doped LSGM for electrolyte material of solid oxide fuel cells, in: AIP Conf. Proc., 2013: pp. 976–977. https://doi.org/10.1063/1.4791368

  9. K. Huang, J.B. Goodenough, Solid Oxide Fuel Cell Technology: Principles, Performance and Operations (CRC Press, 2009), https://doi.org/10.1533/9781845696511

  10. Ç Öncel, M. Gulgun, Chemical Synthesis of Mixed Oxide Powders for Solid Oxide Fuel Cell (SOFC) Electrolyte and Electrodes, Assess. Hydrog. Energy Sustain. Dev. (2007) 147–159

  11. D. Kioupis, A. Gaki, G. Kakali, Wet chemical synthesis of La1-xSrxGa 0.8Mg0.2O3-σ (x = 0.1, 0.2, 0.3) powders, Mater. Sci. Forum Trans. Tech. Publications Ltd., 2010: 908–913. https://doi.org/10.4028/www.scientific.net/MSF.636-637.908

  12. P. Huang, A. Petric, Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium, Electrochem. Soc. 143 (1996)

  13. M. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, 3330697A, 1967

  14. M. Kakihana, Invited Review “Sol-Gel” Preparation of High Temperature Superconducting Oxides*. J. Sol-Gel Sci. Technol. 6, 7–55 (1996)

    Article  CAS  Google Scholar 

  15. E. Djurado, M. Labeaub, Second Phases in Doped Lanthanum Gallate Perovskites. J. Eur. Ceram. Soc. 18, 1397–1404 (1998)

    Article  CAS  Google Scholar 

  16. P. Majewski, M. Rozumek, C.A. Tas, F. Aldinger, Processing of (La,Sr)(Ga,Mg)O 3 Solid Electrolyte. J Electroceram. 8, 65–73 (2002)

    Article  CAS  Google Scholar 

  17. M.M. Guenter, M. Lerch, H. Boysen, D. Toebbens, E. Suard, C. Baehtz, Combined neutron and synchrotron X-ray diffraction study of Sr/Mg-doped lanthanum gallates up to high temperatures. J. Phys. Chem. Solids 67, 1754–1768 (2006). https://doi.org/10.1016/j.jpcs.2006.04.001

    Article  CAS  Google Scholar 

  18. Y. Wang, X. Liu, G.-D. Yao, R.C. Liebermann, M. Dudley, High temperature transmission electron microscopy and X-ray diffraction studies of twinning and the phase transition at 145°C in LaGaO3. Mater. Sci. Eng. A 132, 13–21 (1991)

    Article  Google Scholar 

  19. K. Huang, R. Tichy, J. Goodenought, Superior Perovskite Oxide-Ion Conductor; Strontium-and Magnesium-Doped LaGaO 3: I, Phase Relationships and Electrical Properties. J. Ame Ceram. Soc. 81, 2565–2575 (1998)

    Article  CAS  Google Scholar 

  20. R.C. Biswal, K. Biswas, Novel way of phase stability of LSGM and its conductivity enhancement. Int. J. Hydrogen Energy 40, 509–518 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.099

    Article  CAS  Google Scholar 

  21. R.K. Singh, P. Singh, Synthesis of La0.9Sr0.1Ga0.8Mg 0.2O3-δ electrolyte via ethylene glycol route and its characterizations for IT-SOFC. Ceram. Int. 40, 7177–7184 (2014). https://doi.org/10.1016/j.ceramint.2013.12.056

    Article  CAS  Google Scholar 

  22. D. Marrero-López, J.C. Ruiz-Morales, J. Peña-Martínez, M.C. Martín-Sedeño, J.R. Ramos-Barrado, Influence of phase segregation on the bulk and grain boundary conductivity of LSGM electrolytes. Solid State Ionics. 186, 44–52 (2011). https://doi.org/10.1016/J.SSI.2011.01.015

    Article  Google Scholar 

  23. S. Yu, H. Bi, J. Sun, L. Zhu, H. Yu, C. Lu, X. Liu, Effect of grain size on the electrical properties of strontium and magnesium doped lanthanum gallate electrolytes. J. Alloys Compd. 777, 244–251 (2019). https://doi.org/10.1016/J.JALLCOM.2018.10.257

    Article  CAS  Google Scholar 

  24. E. Gomes, M.R. Soares, F.M. Figueiredo, F.M.B. Marques, Conductivity of La0.95Sr0.05Ga0.90Mg0.10O3 – δ obtained by mechanical activation. J. Eur. Ceram. Soc. 25, 2599–2602 (2005). https://doi.org/10.1016/J.JEURCERAMSOC.2005.03.109

    Article  CAS  Google Scholar 

  25. Y.-M. Chen, T.-N. Lin, M.-W. Liao, H.-Y. Kuo, C.-Y. Yeh, W.-X. Kao, S.-F. Yang, K.-T. Wu, T. Ishihara, Applications of the Glycine Nitrate Combustion Method for Powder Synthesis on the LSGM-based Electrolyte-Supported Solid Oxide Fuel Cells. ECS Trans. 78, 773–781 (2017). https://doi.org/10.1149/07801.0773ecst

    Article  CAS  Google Scholar 

  26. M. Morales, J.J. Roa, J. Tartaj, M. Segarra, A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: From materials processing to electrical and thermo-mechanical properties. J. Eur. Ceram. Soc. 36, 1–16 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.025

    Article  CAS  Google Scholar 

  27. S.L. Reis, E.N.S. Muccillo, Influence of small amounts of gallium oxide addition on ionic conductivity of La0.9Sr0.1Ga0.8Mg0.2O3-δ solid electrolyte. Ceram. Int. 44, 115–119 (2018). https://doi.org/10.1016/j.ceramint.2017.09.139

    Article  CAS  Google Scholar 

  28. L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, S ynthesis and characterization of IT-electrolyte with perovskite structure La Sr Ga Mg O by glycine-nitrate combustion method, 2003

  29. K. Huang, M. Feng, J. Goodenough, Sol-Gel Synthesis of a New Oxide-Ion Conductor Sr- and Mg-Doped LaGaO3 Perovakite. J. Am. Ceram. Soc. 79, 1100–1104 (1996)

    Article  CAS  Google Scholar 

  30. L. Vasylechko, A. Senyshyn, Y. Pivak, M. Berkowske, V. Vashook, H. Ullmann, C. Bähtz, U. Bismayer, LSGM Single Crystals: Crystal Structure, Thermal Expansion, Phase Transitions and Conductivity, Mix. Ion. Electron. Conduct. Perovskites Adv. Energy Syst. (2004) 231–237

  31. P. Datta, P. Majewski, F. Aldinger, Thermal expansion behaviour of Sr- and Mg-doped LaGaO3 solid electrolyte. J. Eur. Ceram. Soc. 29, 1463–1468 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.029

    Article  CAS  Google Scholar 

  32. M.S. Khan, M.S. Islam, D.R. Bates, Dopant Substitution and Ion Migration in the LaGaO 3-Based Oxygen Ion Conductor, 1997

Download references

Acknowledgements

The authors acknowledge the financial support of FONDECYT (ANID) Projects No.:1181703, 11220335 and DOCTORADO NACIONAL: 21202168, Government of Chile. The authors thank Mónica Uribe from Instituto de Geología Aplicada, UDEC; the Centro de Microscopía Avanzada, CMA BIO-BIO, Proyecto PIA-ANID ECM-12 for their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erwin Sepúlveda or R. V. Mangalaraja.

Ethics declarations

Conflict of interest statement

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, E., Mangalaraja, R.V., Udayabhaskar, R. et al. Preparation of LSGM electrolyte via fast combustion method and analysis of electrical properties for ReSOC.. J Electroceram 49, 85–93 (2022). https://doi.org/10.1007/s10832-022-00294-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00294-7

Keywords

Navigation