Skip to main content
Log in

Preparation and Performance of a La0.6Sr0.4CoxFe1−xO3 Cathode for Solid Oxide Fuel Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a potential cathode material, La0.6Sr0.4CoxFe1−xO3 (LSCF), for intermediate-temperature solid oxide fuel cells (SOFCs) is synthesized via a citric acid-assisted combustion method. The electrolyte-supported solid oxide fuel cell is formed in a conventional way to estimate the cell performance. Results show that the as-prepared powders have a pure perovskite structure after calcination at 1050°C, and the initial powders have a fluffy and spongy mass with a porous structure. The cell performance is affected by the LSCF powder morphology and calcination temperature. The peak power density of the Y2O3-stabilized ZrO2 (YSZ) electrolyte-supported single cell using LSCF as cathode is 28 mW cm−2 at 800°C, while the smallest area-specific resistance obtained is 19 Ω cm2. This suggests that La0.6Sr0.4CoxFe1−xO3 is a promising potential cathode material for SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Liu, Z. Shao, M. Toshiyuki, and S. Jiang, Development of Nickel Based Cermet Anode Materials in Solid Oxide Fuel Cells-Now and Future. Mater. Rep.: Energy 1, 100003 (2020).

    Google Scholar 

  2. M. Beigzadeh, F. Pourfayaz, M. Ghazvini, and M.H. Ahmadi, Energy and Exergy Analyses of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems Fed by Different Renewable Biofuels: A Comparative Study. J. Clean. Prod. 280, 124383 (2021).

    Article  CAS  Google Scholar 

  3. O. Sharaf and M. Orhan, An Overview of Fuel Cell Technology: Fundamentals and Applications. Renew. Sust. Energ. Rev. 32, 810 (2014).

    Article  CAS  Google Scholar 

  4. K. Al-Hamed and I. Dincer, Development and Optimization of a Novel Solid Oxide Fuel Cell-Engine Powering System for Cleaner Locomotives. Appl. Therm. Eng. 183, 116150 (2021).

    Article  Google Scholar 

  5. M. Shen and P. Zhang, Progress and Challenges of Cathode Contact Layer for Solid Oxide Fuel Cell. Int. J. Hydrogen Energ. 45, 33876 (2020).

    Article  CAS  Google Scholar 

  6. Z. Lyu, H. Li, Y. Wang, and M. Han, Performance Degradation of Solid Oxide Fuel Cells Analyzed by Evolution of Electrode Processes Under Polarization. J. Power Sour. 485, 229237 (2021).

    Article  CAS  Google Scholar 

  7. B. Maguire, F. Marques, and J. Labrincha, Cathode Materials for Intermediate Temperature SOFCs. Solid State Ion. 127, 329 (2000).

    Article  CAS  Google Scholar 

  8. B. Zhu, Advantages of Intermediate Temperature Solid Oxide Fuel Cells for Tractionary Applications. J. Power Sour. 93, 82 (2001).

    Article  CAS  Google Scholar 

  9. Y. Bu, S. Joo, Y. Zhang, Y. Wang, D. Meng, X. Ge, and G. Kim, A Highly Efficient Composite Cathode for Proton-Conducting Solid Oxide Fuel Cells. J. Power Sour. 451, 227812 (2020).

    Article  CAS  Google Scholar 

  10. S. Rehman, R. Song, T. Lim, J. Hong, and S. Lee, Parametric Study on Electrodeposition of a Nanofibrous LaCoO3 SOFC Cathode. Ceram. Int. 47, 5570 (2021).

    Article  Google Scholar 

  11. K. Song, Z. Yu, X. Luo, S. Zhu, Y. Yang, Q. Yang, D. Tian, X. Lu, Y. Ding, Y. Chen, and B. Lin, A Simple Ce-Doping Strategy to Enhance Stability of Hybrid Symmetrical Electrode for Solid Oxide Fuel Cells. Int. J. Hydrogen Energ. 45, 29259 (2020).

    Article  CAS  Google Scholar 

  12. H. Gu, M. Xu, Y. Song, C. Zhou, C. Su, W. Wang, R. Ran, W. Zhou, and Z. Shao, SrCo0.8Ti0.1Ta0.1O3-δ Perovskite: A New Highly Active and Durable Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells. Compos. Part B-Eng. 213, 108726 (2021).

    Article  CAS  Google Scholar 

  13. A. Abdalla, M. Kamel, S. Hossain, J. Irvine, and A. Azad, Synthesis and Electrochemical Characterization of La0.75Sr0.25Mn0.5Cr0.5−xAlxO3 for IT- and HT-SOFCs. Int. J. Appl. Ceram. Tec. 17, 1276 (2019).

    Article  Google Scholar 

  14. K. Pei, Y. Zhou, K. Xu, Z. He, Y. Chen, W. Zhang, S. Yoo, B. Zhao, W. Yuan, M. Liu, and Y. Chen, Enhanced Cr-Tolerance of an SOFC Cathode by an Efficient Electro-Catalyst Coating. Nano Energy 72, 104704 (2020).

    Article  CAS  Google Scholar 

  15. N. Droushiotis, A. Torabi, M. Othman, T. Etsell, and G. Kelsall, Effects of Lanthanum Strontium Cobalt Ferrite (LSCF) Cathode Properties on Hollow Fibre Micro-Tubular SOFC Performances. J. Appl. Electrochem. 42, 517 (2012).

    Article  CAS  Google Scholar 

  16. G. DiGiuseppe, D. Thompson, C. Gumeci, A. Hussain, and N. Dale, Distribution of Relaxation Times Analysis and Interfacial Effects of LSCF Fired at Different Temperatures. Int. J. Hydrogen Energy. 44, 27067 (2019).

    Article  CAS  Google Scholar 

  17. F. Zhou, Y. Liu, X. Zhao, W. Tang, S. Yang, S. Zhong, and M. Wei, Effects of Cerium Doping on the Performance of LSCF Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Int. J. Hydrogen Energ. 43, 18946 (2018).

    Article  CAS  Google Scholar 

  18. S. Biswas, T. Nithyanantham, N. Saraswathi, and S. Bandopadhyay, Evaluation of Elastic Properties of Reduced NiO-8YSZ Anode-Supported Bi-Layer SOFC Structures at Elevated Temperatures in Ambient Air and Reducing Environments. J. Mater. Sci. 44, 778 (2009).

    Article  CAS  Google Scholar 

  19. L. da Conceição, A. Silva, N. Ribeiro, and M. Souza, Combustion Synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) Porous Materials for Application as Cathode in IT-SOFC. Mater. Res. Bull. 46, 308 (2011).

    Article  Google Scholar 

  20. Y. Boyjoo, M. Wang, V. Pareek, J. Liu, and M. Jaroniec, Synthesis and Applications of Porous Non-Silica Metal Oxide Submicrospheres. Chem. Soc. Rev. 45, 6013 (2016).

    Article  CAS  Google Scholar 

  21. Y. Shi, Y. Wen, K. Huang, X. Xiong, J. Wang, M. Liu, D. Ding, Y. Chen, and T. Liu, Surface Enhanced Performance of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes by Infiltration Pr-Ni-Mn-O Progress. J. Alloy. Compd. 902, 163337 (2022).

    Article  CAS  Google Scholar 

  22. D. Osinkin, S. Beresnev, and N. Bogdanovicha, Influence of Pr6O11 on Oxygen Electroreduction Kinetics and Electrochemical Performance of Sr2Fe1.5Mo0.5O6-δ Based Cathode. J. Power Sour. 392, 41 (2018).

    Article  CAS  Google Scholar 

  23. Y. Hu, Y. Su, C. Li, C. Li, and G. Yang, Dense Mn1.5Co1.5O4 Coatings with Excellent Long-Term Stability and Electrical Performance Under the SOFC Cathode Environment. Appl. Surf. Sci. 499, 143726 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province of China under contact no. 2108085ME152 and the Talent Research Fund Project of Hefei University under contact no. 21-22RC34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihai Cheng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Cheng, J. Preparation and Performance of a La0.6Sr0.4CoxFe1−xO3 Cathode for Solid Oxide Fuel Cells. J. Electron. Mater. 51, 6410–6415 (2022). https://doi.org/10.1007/s11664-022-09876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09876-1

Keywords

Navigation