Skip to main content
Log in

Relationship among the powder mass, press charge, and final properties of an LSGM electrolyte for solid oxide cells

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this work, La0.85Sr0.15Ga0.85Mg0.15O3−δ (LSGM) was prepared as an electrolyte for solid oxide cell (SOC) applications. A fast combustion method was used, starting with nitrate salts and citric acid as fuel. Different parameters, such as mass and pressing load, in the pre-sintering step were used to obtain a highly ionic conductive material at intermediate temperatures. The aim is to find optimal processing conditions for energy savings. SEM analysis showed similar grain sizes and distributions for all samples. The XRD spectra showed two main phases corresponding to LSGM orthorhombic (space group Imma) and LSGM cubic (space group Pm-3m). LaSrGaO4 appeared in lighter samples. The EIS revealed that heavier samples present high conductivity, showing a clear relationship between conductivity, sample mass (during the pre-sintering step), and the LSGM phase amount. The effect of pressure was less evident. The highest conductivity was 0.013 and 0.063 S cm−1 at 600 and 800 °C, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Ishihara, T. Kanno, Steam electrolysis using LaGaO3 based perovskite electrolyte. ISIJ Int. 50(9), 1291–1295 (2010)

    Article  CAS  Google Scholar 

  2. H. Maria van der, Technology roadmap hydrogen and fuel cells. (2015). [Online]. Available: https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapHydrogenandFuelCells.pdf

  3. J. Töpler, J. Lehmann, Hydrogen and fuel cell (Springer, Berlin, 2016)

    Book  Google Scholar 

  4. Y. Ling et al., Review of experimental and modelling developments for ceria-based solid oxide fuel cells free from internal short circuits. J. Mater. Sci. 55(1), 1–23 (2020). https://doi.org/10.1007/s10853-019-03876-z

    Article  CAS  Google Scholar 

  5. A. Dicks, D. Rand, Fuel cell systems explained (John Wiley & Sons, Hoboken, 2018)

    Book  Google Scholar 

  6. T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. (1994) [Online]. Available: https://pubs.acs.org/sharingguidelines.

  7. T. Ishihara, Perovskite oxide for solid oxide fuel cells (Springer, New York, 2009)

    Book  Google Scholar 

  8. T. Ishihara, Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells. Bull. Chem. Soc. Jpn. 79(8), 1155–1166 (2006). https://doi.org/10.1246/bcsj.79.1155

    Article  CAS  Google Scholar 

  9. K. Huang, J.B. Goodenough, Solid oxide fuel cell technology: principles, performance and operations (CRC Press, Cambridge, 2009)

    Book  Google Scholar 

  10. P. Huang, A. Petric, Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium. Electrochem. Soc. 143(5), 1644 (1996)

    Article  CAS  Google Scholar 

  11. M. Shi et al., Synthesis and characterization of Sr- and Mg-doped Lanthanum gallate electrolyte materials prepared via the Pechini method. Mater. Chem. Phys. 114(1), 43–46 (2009). https://doi.org/10.1016/j.matchemphys.2008.06.051

    Article  CAS  Google Scholar 

  12. Y.-M. Chen et al., Applications of the glycine nitrate combustion method for powder synthesis on the LSGM-based electrolyte-supported solid oxide fuel cells. ECS Meet. Abstr. (2017). https://doi.org/10.1149/ma2017-03/1/58

    Article  Google Scholar 

  13. P. Majewski, M. Rozumek, C.A. Tas, F. Aldinger, Processing of (La, Sr) (Ga, Mg)O3 solid electrolyte. J. Electroceram. 8, 65–73 (2002)

    Article  CAS  Google Scholar 

  14. E. Djurado, M. Labeaub, Second phases in doped lanthanum gallate perovskites. J. Eur. Ceram. Soc. 18, 1397–1404 (1998)

    Article  CAS  Google Scholar 

  15. C. Oncel, B. Ozkaya, M.A. Gulgun, X-ray single phase LSGM at 1350 °C. J. Eur. Ceram. Soc. 27(2–3), 599–604 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.115

    Article  CAS  Google Scholar 

  16. M. Shi et al., Synthesis and characterization of La0.85Sr0.15Ga0.80Mg0.20O2.825 by glycine combustion method and EDTA combustion method. Powder Technol. 204(2–3), 188–193 (2010). https://doi.org/10.1016/j.powtec.2010.07.020

    Article  CAS  Google Scholar 

  17. K. Huang, R. Tichy, J. Goodenought, Superior perovskite oxide-ion conductor; strontium-and magnesium-doped LaGaO3: I, phase relationships and electrical properties. J. Ame. Ceram. Soc. 81(10), 2565–2575 (1998)

    Article  CAS  Google Scholar 

  18. V. Esteve, El método de rietveld, 2a edn. (Universitat Jaume, Castelló de la Plana, 2014)

    Google Scholar 

  19. E. Sepúlveda, R.V. Mangalaraja, L. Troncoso, J. Jiménez, C. Salvo, F. Sanhueza, Effect of barium on LSGM electrolyte prepared by fast combustion method for solid oxide fuel cells (SOFC). MRS Adv. 7(35), 1167–1174 (2022). https://doi.org/10.1557/s43580-022-00373-5

    Article  CAS  Google Scholar 

  20. E. Sepúlveda et al., Preparation of LSGM electrolyte via fast combustion method and analysis of electrical properties for ReSOC. J. Electroceram. 49(2), 85–93 (2022). https://doi.org/10.1007/s10832-022-00294-7

    Article  CAS  Google Scholar 

  21. M.M. Guenter, M. Lerch, H. Boysen, D. Toebbens, E. Suard, C. Baehtz, Combined neutron and synchrotron X-ray diffraction study of Sr/Mg-doped lanthanum gallates up to high temperatures. J. Phys. Chem. Solids 67(8), 1754–1768 (2006). https://doi.org/10.1016/j.jpcs.2006.04.001

    Article  CAS  Google Scholar 

  22. Y. Wang, X. Liu, G.-D. Yao, R.C. Liebermann, M. Dudley, High temperature transmission electron microscopy and X-ray diffraction studies of twinning and the phase transition at 145 °C in LaGaO3. Mater. Sci. Eng. A 132, 13–21 (1991)

    Article  Google Scholar 

  23. T.W. Li, S.Q. Yang, S. Li, Preparation and characterisation of perovskite La0.8Sr0.2Ga0.83Mg0.17O2.815 electrolyte using a poly(vinyl alcohol) polymeric method. J. Adv. Ceram. 5(2), 167–175 (2016). https://doi.org/10.1007/s40145-016-0186-0

    Article  CAS  Google Scholar 

  24. D. Kioupis, A. Gaki, G. Kakali, Wet chemical synthesis of La1xSrxGa0.8Mg0.2O3σ (x = 0.1, 0.2, 0.3) powders. Mater. Sci. Forum 636–637, 908–913 (2010). https://doi.org/10.4028/www.scientific.net/MSF.636-637.908

    Article  CAS  Google Scholar 

  25. R.C. Biswal, K. Biswas, Novel way of phase stability of LSGM and its conductivity enhancement. Int. J. Hydrogen Energy 40(1), 509–518 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.099

    Article  CAS  Google Scholar 

  26. X.P. Lin, H.T. Zhong, X. Cheng, B. Ge, D.S. Ai, Preparation and property of lsgm-carbonate composite electrolyte for low temperature solid oxide fuel cell. Solid State Phenomena 281, 754–760 (2018). https://doi.org/10.4028/www.scientific.net/SSP.281.754

    Article  Google Scholar 

  27. K. Huang, R.S. Tichy, J.B. Goodenough, Superior perovskite oxide-ion conductor; Strontium- and magnesium-doped LaGaO3: II, ac impedance spectroscopy. J. Am. Ceram. Soc. 81(10), 2576–2580 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02663.x

    Article  CAS  Google Scholar 

  28. S. Li, B. Bergman, Doping effect on secondary phases, microstructure and electrical conductivities of LaGaO3 based perovskites. J. Eur. Ceram. Soc. 29(6), 1139–1146 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.017

    Article  CAS  Google Scholar 

  29. S. Yu et al., Effect of grain size on the electrical properties of strontium and magnesium doped lanthanum gallate electrolytes. J. Alloys Compd. 777, 244–251 (2019). https://doi.org/10.1016/j.jallcom.2018.10.257

    Article  CAS  Google Scholar 

  30. G.M. Rupp, M. Glowacki, J. Fleig, Electronic and ionic conductivity of La0.95Sr0.05Ga0.95Mg0.05O3δ (LSGM) single crystals. J. Electrochem. Soc. 163(10), F1189–F1197 (2016). https://doi.org/10.1149/2.0591610jes

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of FONDEF VIU (ANID) Project No.:22P0087. Government of Chile. The authors thank Mónica Uribe from Instituto de Geología Aplicada. UDEC; the Centro de Microscopía Avanzada.

Funding

The authors thank the Project: FONDEF VIU 22P0087 from the Agencia Nacional de Investigación y Desarrollo (ANID), Chile.

Author information

Authors and Affiliations

Authors

Contributions

ES contributed toward Full redaction, EIS analysis, and compilation. FS contributed toward characterization XRD, SEM. RC contributed toward morphology, size distribution, and graphs. JJ contributed toward XRD and Rietveld refinement. MRV contributed toward translation and final revision.

Corresponding author

Correspondence to Erwin Sepúlveda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, E., Sanhueza, F., Cobo, R. et al. Relationship among the powder mass, press charge, and final properties of an LSGM electrolyte for solid oxide cells. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00771-x

Navigation