Skip to main content
Log in

Effect of barium on LSGM electrolyte prepared by fast combustion method for solid oxide fuel cells (SOFC)

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this work, La0.85Sr0.15–xBaxGa0.85Mg0.15O3–δ (LSBGM), with 0 ≤ x ≤ 0.075, were prepared as electrolytes for solid oxide fuel cells applications. The effect of barium and sintering temperature on the structure and electrical properties was studied. A fast combustion method was used, starting with nitrate salts and citric acid as fuel. The XRD spectra showed two main phases corresponding to LSGM orthorhombic (space group Imma) and LSGM-cubic (space group Pm-3 m). From literature, both structures are reported as high oxygen ion conductive species, but normally, they are not reported to appear together. Major secondary phases were LaSrGaO4, BaLaGaO4, and BaLaGaO7. SEM revealed a material with low porosity, indicating incomplete densification. The sample La0.85Sr0.075Ba0.075Ga0.85Mg0.15O3–δ showed a conductivity of 0.016 and 0.058 S cm−1 at 600 °C and 800 °C, respectively. This means an improvement of 34% compared to the non-barium sample La0.85Sr0.15Ga0.85Mg0.15O3-δ at 600 °C. Thus, this composition could be used in SOFC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. NOAA, Earth system research laboratory (NOAA, 2022)

    Google Scholar 

  2. A. Dicks, D. Rand, Fuel cell systems explained (John Wiley & Sons Ltd, 2018)

    Book  Google Scholar 

  3. L. Blum, R. Deja, R. Peters, D. Stolten, Comparison of efficiencies of low, mean and high temperature fuel cell Systems. Int. J. Hydrogen Energy 36(17), 11056–11067 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.122

    Article  CAS  Google Scholar 

  4. T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. In J. Am. Chem. Soc 116, 3801 (1994)

    Article  CAS  Google Scholar 

  5. T. Ishihara, Perovskite oxide for solid oxide fuel cells (Springer, 2009)

    Book  Google Scholar 

  6. P.S. Cho, S.Y. Park, Y.H. Cho, S.J. Kim, Y.C. Kang, T. Mori, J.H. Lee, Preparation of LSGM powders for low temperature sintering. Solid State Ionics 180(11–13), 788–791 (2009). https://doi.org/10.1016/j.ssi.2008.12.040

    Article  CAS  Google Scholar 

  7. T. Ishihara, Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells. Bull. Chem. Soc. Japan 79(8), 1155–1166 (2006). https://doi.org/10.1246/bcsj.79.1155

    Article  CAS  Google Scholar 

  8. K. Huang, J.B. Goodenough, Solid oxide fuel cell technology: principles performance and operations (CRC Press, 2009)

    Book  Google Scholar 

  9. R.C. Biswal, K. Biswas, Novel way of phase stability of LSGM and its conductivity enhancement. Int. J. Hydrogen Energy 40(1), 509–518 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.099

    Article  CAS  Google Scholar 

  10. R.K. Raghvendra Singh, P. Singh, Electrical properties of Ba doped LSGM for electrolyte material of solid oxide fuel cells. AIP Conf. Proc. 1512(2012), 976–977 (2013). https://doi.org/10.1063/1.4791368

    Article  CAS  Google Scholar 

  11. M.M. Guenter, M. Lerch, H. Boysen, D. Toebbens, E. Suard, C. Baehtz, Combined neutron and synchrotron X-ray diffraction study of Sr/Mg-doped lanthanum gallates up to high temperatures. J. Phys. Chem. Solids 67(8), 1754–1768 (2006). https://doi.org/10.1016/j.jpcs.2006.04.001

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Liu, G.D. Yao, R.C. Liebermann, M. Dudley, High temperature transmission electron microscopy and X-ray diffraction studies of twinning and the phase transition at 145 d°C in LaGaO3. Mater. Sci. Eng. A 132, 13–21 (1991)

    Article  Google Scholar 

  13. K. Huang, R. Tichy, J. Goodenought, Superior perovskite oxide-ion conductor; strontium-and magnesium-doped LaGaO 3: I, phase relationships and electrical properties. J. Ame. Ceram. Soc. 81(10), 2565–2575 (1998)

    Article  CAS  Google Scholar 

  14. P. Huang, A. Petric, Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium. Electrochem. Soc. 143(5), 1644 (1996)

    Article  CAS  Google Scholar 

  15. Ç. Öncel, M. Gulgun, Chemical synthesis of mixed oxide powders for solid oxide fuel cell (SOFC) electrolyte and electrodes, in Assessment of hydrogen energy for sustainable development. (Springer, 2007), pp.147–159

    Chapter  Google Scholar 

  16. D. Kioupis, A. Gaki, G. Kakali, Wet chemical synthesis of La1-xSrxGa 0.8Mg0.2O3-σ (x=0.1, 0.2, 0.3) powders. Mater. Sci. Forum 636–637, 908–913 (2010). https://doi.org/10.4028/www.scientific.net/MSF.636-637.908

    Article  CAS  Google Scholar 

  17. M. Kakihana, Invited review “Sol-Gel” preparation of high temperature superconducting oxides*. J. Sol-Gel. Sci. Technol. 6, 7–55 (1996)

    Article  CAS  Google Scholar 

  18. M. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor (Sprague Electric Co, 1967)

    Google Scholar 

  19. P. Majewski, M. Rozumek, C.A. Tas, F. Aldinger, Processing of (La, Sr)(Ga, Mg)O 3 solid electrolyte. J. Electroceram. 8, 65–73 (2002)

    Article  CAS  Google Scholar 

  20. E. Djurado, M. Labeaub, Second phases in doped lanthanum gallate perovskites. J. Euro. Ceram. Soc. 18, 1397–1404 (1998)

    Article  CAS  Google Scholar 

  21. R.K. Singh, P. Singh, Electrical conductivity of barium substituted LSGM electrolyte materials for IT-SOFC. Solid State Ionics 262, 428–432 (2014). https://doi.org/10.1016/j.ssi.2014.01.044

    Article  CAS  Google Scholar 

  22. M. Morales, J.J. Roa, J. Tartaj, M. Segarra, A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: from materials processing to electrical and thermo-mechanical properties. J Euro Ceram Soc 36(1), 1–16 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.025

    Article  CAS  Google Scholar 

  23. M. Morales, J.J. Roa, J.M. Perez-Falcón, A. Moure, J. Tartaj, F. Espiell, M. Segarra, Correlation between electrical and mechanical properties in La 1-xSrxGa1-yMgyO3-δ ceramics used as electrolytes for solid oxide fuel cells. J. Power Sources 246, 918–925 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.028

    Article  CAS  Google Scholar 

  24. L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, S ynthesis and characterization of IT-electrolyte with perovskite structure La Sr Ga Mg O by glycine-nitrate combustion method. J. Alloys Compd. 348, 325 (2003)

    Article  CAS  Google Scholar 

  25. L. Vasylechko, A. Senyshyn, Y. Pivak, M. Berkowske, V. Vashook, H. Ullmann, C. Bähtz, U. Bismayer, LSGM single crystals: crystal structure, thermal expansion, phase transitions and conductivity, in Mixed ionic electronic conducting perovskites for advanced energy systems. (Springer, 2004), pp.231–237

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of FONDECYT (ANID) Project No.:1181703. Government of Chile. The authors thank Mónica Uribe from Instituto de Geología Aplicada. UDEC; the Centro de Microscopía Avanzada. CMA BIO-BIO. Proyecto PIA-ANID ECM-12 for their contribution to this work.

Funding

This work was funded by the National Agency for Research and Development (ANID) / Scholarship Program/DOCTORADO NACIONAL/21202168.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erwin Sepúlveda or Ramalinga Viswanathan Mangalaraja.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, E., Mangalaraja, R.V., Troncoso, L. et al. Effect of barium on LSGM electrolyte prepared by fast combustion method for solid oxide fuel cells (SOFC). MRS Advances 7, 1167–1174 (2022). https://doi.org/10.1557/s43580-022-00373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00373-5

Navigation