Skip to main content
Log in

Effect of Ca substitution on microwave dielectric properties of BaV2O6 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Effects of Ca substitution for Ba on the phase composition, microstructure, sintering behavior and microwave dielectric properties of nominal ceramics Ba1-xCaxV2O6 (0.2 ≤ x ≤ 0.5) were investigated. The XRD, Raman and SEM results revealed that BaV2O6 and CaV2O6 composite ceramics were formed. Nominal ceramics Ba1-xCaxV2O6 could be well densified at about 550 °C via a solid-state reaction method. The microwave dielectric properties exhibited strong dependence on the composition and microstructure. Typically, the Ba0.7Ca0.3V2O6 ceramics sintered at 550 °C exhibited excellent microwave dielectric properties: εr = 10.9, Qxf = 17,100 GHz (at 9.9 GHz), and τf = 4 ppm/°C. Meanwhile, Ba0.7Ca0.3V2O6 ceramics also showed good chemical compatibility with Al electrode. These results indicated that the Ba0.7Ca0.3V2O6 ceramics could be a promising candidate for the ULTCC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.X. Song, P. Liu, H.X. Lin, W.T. Su, Z.H. Ying, J. Eur. Ceram. Soc. 36, 1167 (2016)

    Article  Google Scholar 

  2. J. Zhang, Y.Y. Zhou, B. Peng, Z.X. Yue, J. Am. Ceram. Soc. 97, 3537 (2014)

    Article  Google Scholar 

  3. W. Jin, W.L. Yin, S.Q. Yu, M.J. Tang, Mater. Lett. 173, 47 (2016)

    Article  Google Scholar 

  4. T.A. Vanderah, Science 298, 1182 (2002)

    Article  Google Scholar 

  5. M. Valant, D. Suvorov, J. Am. Ceram. Soc. 84, 2900 (2001)

    Article  Google Scholar 

  6. D. Zhou, L.X. Pang, Z.M. Qi, B.B. Jin, X. Yao, Sci. Rep-UK. 4, 1 (2014)

    Google Scholar 

  7. R.R. Turnmala, J. Am. Ceram. Soc. 74, 895 (1991)

    Article  Google Scholar 

  8. H. Kahari, M. Teirikangas, H.L. Jantunen, J. Am. Ceram. Soc. 97, 3537 (2014)

    Article  Google Scholar 

  9. M.T. Sebastian, H. Wang, H.L. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151 (2016)

    Article  Google Scholar 

  10. H.T. Yu, J.S. Liu, W.L. Zhang, S.R. Zhang, J. Mater, Sci. Mater. Electron. 26, 9414 (2015)

    Article  Google Scholar 

  11. E.K. Suresh, A.N. Unnimaya, A. Surjith, R. Ratheesh, Ceram. Int. 39, 3635 (2013)

    Article  Google Scholar 

  12. L. Fang, C.X. Su, H.F. Zhou, H. Zhang, J. Am. Ceram. Soc. 96, 688 (2013)

    Article  Google Scholar 

  13. C.H. Su, Y.S. Wang, C.L. Huang, J. Alloys. Compd. 641, 93 (2015)

    Article  Google Scholar 

  14. H.F. Zhou, F. He, X.L. Chen, L. Fang, J. Mater. Sci. Mater. Electron. 25, 1480 (2014)

  15. G.G. Yao, P. Liu, J.J. Zhou, H.W. Zhang, J. Eur. Ceram. Soc. 34, 2983 (2014)

    Article  Google Scholar 

  16. S.E. Kalathil, A. Neelakantan, R. Ratheesh, J. Am. Ceram. Soc. 97, 1530 (2014)

    Article  Google Scholar 

  17. E.K. Suresh, K. Prasad, N.S. Arun, R. Ratheesh, J. Electron. Mater. 45, 2996 (2016)

    Article  Google Scholar 

  18. U.A. Neelakantan, S.E. Kalathil, R. Ratheesh, Eur. J. Inorg. Chem. 2, 305 (2015)

    Article  Google Scholar 

  19. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, J. Alloys Compd. 424, 388 (2006)

    Article  Google Scholar 

  20. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J. Am. Ceram. Soc. 92, 3092 (2009)

    Article  Google Scholar 

  21. C.J. Pei, G.G. Yao, Z.Y. Ren, J. Ceram. Process. Res. 17, 681 (2016)

    Google Scholar 

  22. F.F. Gu, G.H. Chen, X.Q. Li, M. Li, Mater. Chem. Phys. 167, 354 (2015)

    Article  Google Scholar 

  23. P.L. Wise, I.M. Reaney, W.E. Lee, J. Mater. Res. 17, 2033 (2002)

    Article  Google Scholar 

  24. G.G. Yao, C.J. Pei, P. Liu, H.W. Zhang, J. Mater, Sci. Mater. Electron. 26, 7719 (2015)

    Article  Google Scholar 

  25. E.J. Baran, C.I. Cabello, A.G. Nord, J. Raman Spectrosc. 18, 405 (1987)

    Article  Google Scholar 

  26. Y. Li, R.L. Tang, N. Li, X.D. Zhao, P.W. Zhu, X. Wang, J. Appl. Phys. 118, 035902 (2015)

    Article  Google Scholar 

  27. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997)

    Article  Google Scholar 

  28. N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26, 1755 (2006)

    Article  Google Scholar 

  29. C. Zhang, R.Z. Zuo, J. Alloys Compd. 622, 362 (2015)

    Article  Google Scholar 

  30. S.D. Skapin, U. Pirnat, B. Jancar, D. Suvorov, J. Am. Ceram. Soc. 98, 3818 (2015)

    Article  Google Scholar 

  31. L. Fang, Z. Wei, C. Su, F. Xiang, H. Zhang, Ceram. Int. 40, 16835 (2014)

    Article  Google Scholar 

  32. A.N. Unnimaya, E.K. Suresh, J. Dhanya, R. Ratheesh, J. Mater, Sci. Mater. Electron. 25, 1127 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No. 51402235). China’s Post-doctoral Science Fund (Grant No. 2015 M582696), and by Shaanxi Province Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Ren, Z. & Liu, P. Effect of Ca substitution on microwave dielectric properties of BaV2O6 ceramics. J Electroceram 40, 144–149 (2018). https://doi.org/10.1007/s10832-018-0113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0113-6

Keywords

Navigation